POSEIDON AX

In Situ Liquid Cell with Mixing

Study nanoscale material behavior in liquid environments in the (scanning) transmission electron microscope to drive innovation in soft materials, chemistry, corrosion, drug delivery, and more.

POSEIDON AX INTRODUCTION

Poseidon AX is an in situ liquid phase system for transmission electron microscopy (TEM). It enables researchers to observe their materials under realistic, functional conditions while taking advantage of the resolving power of the TEM. Full control over liquid composition, flow, and temperature allows for visualization of processes like nucleation and growth, degradation, crystallization, or characterization of size, shape, and structure. These observations offer new information to drive innovation in biological and soft materials, drug delivery, catalysts, pigments, cosmetics, and more.

Flexible in situ environments: Full control over liquid flow and solution chemistry to create the most relevant environment for your material.

 

Machine vision software suite: Integrated machine vision software manages many data collection tasks in the background so you can focus on the experiment at hand.

 

Front-to-back workflow: Each step of the research process, from sample preparation to data management and analysis, has been considered to maximize rigor and reproducibility.

 

Safety: Safety of the TEM is top priority – none of our systems require disassembly that would put the TEM at risk to enable different imaging techniques or perform maintenance.

Unmatched chemical compatibility

Up to 100°C

Precise flow and bubble management

True in-situ EDS

Live physical drift mitigation, dose analysis, and offline data analysis

POSEIDON AX WORKFLOW

Prep

Preperation

• Precise dropcasting
• Reproducible FIB deposition
• Sample screening
• Global scientific support

Collect

Collection

• Live physical drift control
• Dose quantification
• Metadata indexing
• Integrated notebook

Analyze

Analyze

  • Flexible liquid control
  • Patented, uniform temperature control
  • TEM/STEM/EDX Optimized
  • Easy maintenance without holder disassembly
  • Publish

    Publish

    • Consolidated visualization
    • Fast filtering
    • Historical experimental records
    • RDM/FAIR compliant

    APPLICATIONS EXAMPLES FROM RESEARCH

     BIOLOGICAL MATERIALS

    Observing virusses, polymers, lipids and other life-science samples at the nanoscale is possible using the Poseidon AX system. In this case the mobility of rotavirus particles was observes using our specialized microwell E-chips.

    Lin, M. et al. (2024) 19, 646–651

     BIOMINERALIZATION

    The Poseidon AX system comes with 2 inlet ports to allow optimal mixing at the tip. This clip shows the formation of calcite using a protein mediate growth by mixing.

    Perovic, I. et al. (2014) Biochem. (53) 7259–7268.

     NANOPARTICLE SYNTHESIS

    The Poseidon AX system can be used to heat liquids to a maximum temperature of 100° C. In this experiment, the growth of gold nanoparticles was observed under different temperatures, creating various nanoparticle shapes and sizes with high control.

    Khelfa, A. et al. (2021) J. Vis. Exp. (168) 62225

    ELECTROCATALYSIS

    Using the Poseidon AX system, an electrochemical bias can be applied in a three electrode set-up to any system. In this case, a CuSO4 solution was observed growing dendrites using cyclic voltammetry.

    BATTERIES

    Most in-depth understanding of plating and stripping behavior in batteries and the mechanisms by which adverse dendritic growth may occur remains underdeveloped. With Poseidon AX, these plating mechanisms can be investigated at the nanoscale.

    Pu, S.D. et al. (2020) ACS Energy Letters, 5, 2283–2290

    CORROSION

    Corrosion is a significant problem for the stability of structural metals and potentially for functional nanomaterials in operating environments. The Poseidon AX system can be used to study corrosion of nanoparticles or FIB lamella.

    Du, J.S. et al. (2021) Adv. Funct. Mater. (31) 2105866
    CATALYSIS SYNTHESIS

    Catalysts work directly on the nanoscale to convert reactants into products. The synthesis of these catalysts needs to be controlled to ensure the materials have a good activity, selectivity and stability. In this case a Fischer-Tropsch catalyst is being synthesized in real time by adding iron oxide colloids in liquid to carbon nanotube supports.

    Krans, N.A. et al. (2019) Micron, (117) 40–46

    POSEIDON AX SYSTEM COMPONETS

    All components are fully approved by the major microscope manufacturers to meet their rigorous standards for safety, compatibility, and reliability.

    E chip JD 1

    SAMPLE SUPPORTS: E-CHIPS

    The Poseidon AX solution uses custom-made microelectromechanical systems (MEMS) as sample supports to adjust liquid thickness, add temperature, or enable electrochemical measurements within the liquid holder. All MEMS devices (E-chips™) are designed, fabricated, and quality checked in-house, which gives Protochips an immense amount of control and oversight to ensure quality and proper functionality as well as keep cost minimized.

     

    With several unique designs such as:

    • Microwells to limit liquid thickness
    • Flow management designs for ultimate flow control
    • Temperature control E-chips with patented FrameHeaterTM technology maximizing uniformity
    • EDS-optimized designs that enable EDS collection without tilting

    there is certain to be a combination to support any research goal.

    Platform AXON MACHINE VISION SOFTWARE PLATFORM

    TEM Processing Software

    There are many variables to control and record during an in situ TEM experiment and the AXON machine vision software platform provides automation without taking away control:

     

    • Live physical drift correction
    • Constant parameter recording and indexing (TEM, camera, and in situ parameters)
    • Real-time electron dose calculations
    • Electron dose exposure tracking and mapping
    • Continuous recording for instant look-backs

     

    You leave the TEM lab with a fully drift corrected and metadata-aligned dataset with all parameters recorded, notes integrated, and ready for trend analysis and movie creation.

     

    • Learn faster
    • Share easier
    • Publish sooner
    • Increase reproducibility
    • Spend less time and money at the TEM
    • RDM/FAIR compliant

    POSEIDON AX LIBRARY

    TitleURLCitation
    Quasi-in situ Observation of MnO 2 Nanorods by Electrochemical Transmission Electron Microscopy for Oxygen Reduction Reaction Processhttps://onlinelibrary.wiley.com/doi/10.1002/aesr.202300229Han, Zengyu; Roslie, Hany; Tan, Shu Fen; Wu, Dongshuang , Quasi?in situ Observation of MnO 2 Nanorods by Electrochemical Transmission Electron Microscopy for Oxygen Reduction Reaction Process, 2024, Advanced Energy and Sustainability Research, 10.1002/aesr.202300229
    Machine learning refinement of in situ images acquired by low electron dose LC-TEMhttps://academic.oup.com/mam/advance-article/doi/10.1093/micmic/ozad142/7591557?searchresult=1Katsuno, Hiroyasu; Kimura, Yuki; Yamazaki, Tomoya; Takigawa, Ichigaku , Machine learning refinement of in situ images acquired by low electron dose LC-TEM, 2024, Microscopy and Microanalysis,, 10.1093/micmic/ozad142
    Insights Into Formation and Growth of Colloidal Multielement Alloy Nanoparticles in Solution through In Situ Liquid Cell TEM Studyhttps://onlinelibrary.wiley.com/doi/10.1002/adfm.202304685Amiri, Azadeh; Yurkiv, Vitaliy; Phakatkar, Abhijit H.; Shokuhfar, Tolou; Shahbazian?Yassar, Reza , Insights Into Formation and Growth of Colloidal Multielement Alloy Nanoparticles in Solution through In Situ Liquid Cell TEM Study, 2024, Advanced Functional Materials, 10.1002/adfm.202304685
    Impact of palladium/palladium hydride conversion on electrochemical CO2 reduction via in-situ transmission electron microscopy and diffractionhttps://www.nature.com/articles/s41467-024-45096-3Abdellah, Ahmed M.; Ismail, Fatma; Siig, Oliver W.; Yang, Jie; Andrei, Carmen M.; DiCecco, Liza-Anastasia; Rakhsha, Amirhossein; Salem, Kholoud E.; Grandfield, Kathryn; Bassim, Nabil; Black, Robert; Kastlunger, Georg; Soleymani, Leyla; Higgins, Drew , Impact of palladium/palladium hydride conversion on electrochemical CO2 reduction via in-situ transmission electron microscopy and diffraction, 2024, Nature Communications, 10.1038/s41467-024-45096-3
    A magnetically powered nanomachine with a DNA clutchhttps://www.nature.com/articles/s41565-023-01599-6Lin, Mouhong; Lee, Jung-uk; Kim, Youngjoo; Kim, Gooreum; Jung, Yunmin; Jo, Ala; Park, Mansoo; Lee, Sol; Lah, Jungsu David; Park, Jongseong; Noh, Kunwoo; Lee, Jae-Hyun; Kwak, Minsuk; Lungerich, Dominik; Cheon, Jinwoo , A magnetically powered nanomachine with a DNA clutch, 2024, Nature Nanotechnology, 10.1038/s41565-023-01599-6
    Toward sub-second solution exchange dynamics in flow reactors for liquid-phase transmission electron microscopyhttps://www-nature-com.proxy.library.uu.nl/articles/s41467-024-46842-3Merkens, Stefan; Tollan, Christopher; De Salvo, Giuseppe; Bejtka, Katarzyna; Fontana, Marco; Chiodini, Angelica; Kruse, Joscha; Iriarte-Alonso, Maiara Aime; Grzelczak, Marek; Seifert, Andreas , Toward sub-second solution exchange dynamics in flow reactors for liquid-phase transmission electron microscopy, 2024, Nature Communications, 10.1038/s41467-024-46842-3
    Stress-induced ordering evolution of 1D segmented heteronanostructures and their chemical post-transformationshttps://www.nature.com/articles/s41467-024-47446-7Chen, Qing-Xia; Lu, Yu-Yang; Yang, Yang; Chang, Li-Ge; Li, Yi; Yang, Yuan; He, Zhen; Liu, Jian-Wei; Ni, Yong; Yu, Shu-Hong , Stress-induced ordering evolution of 1D segmented heteronanostructures and their chemical post-transformations, 2024, Nature Communications, 10.1038/s41467-024-47446-7
    Direct in-situ imaging of electrochemical corrosion of Pd-Pt core-shell electrocatalystshttps://www.nature.com/articles/s41467-024-49434-3Shi, Fenglei; Tieu, Peter; Hu, Hao; Peng, Jiaheng; Zhang, Wencong; Li, Fan; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao; Gao, Wenpei; Pan, Xiaoqing; Wu, Jianbo , Direct in-situ imaging of electrochemical corrosion of Pd-Pt core-shell electrocatalysts, 2024, Nature Communications, 10.1038/s41467-024-49434-3
    Diagnosing the Electrostatic Shielding Mechanism for Dendrite Suppression in Aqueous Zinc Batterieshttps://onlinelibrary.wiley.com/doi/10.1002/adma.202307708Yuan, Yi; Pu, Shengda D.; Pérez?Osorio, Miguel A.; Li, Zixuan; Zhang, Shengming; Yang, Sixie; Liu, Boyang; Gong, Chen; Menon, Ashok S.; Piper, Louis F. J.; Gao, Xiangwen; Bruce, Peter G.; Robertson, Alex W. , Diagnosing the Electrostatic Shielding Mechanism for Dendrite Suppression in Aqueous Zinc Batteries, 2024, Advanced Materials, 10.1002/adma.202307708
    Insights into the nucleation and growth of BiOCl nanoparticles by in situ X-ray pair distribution function analysis and in situ liquid cell TEMhttps://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr01749hGordon, Matthew N.; Junkers, Laura S.; Googasian, Jack S.; Mathiesen, Jette K.; Zhan, Xun; Morgan, David Gene; Jensen, Kirsten M. Ø; Skrabalak, Sara E. , Insights into the nucleation and growth of BiOCl nanoparticles by in situ X-ray pair distribution function analysis and in situ liquid cell TEM, 2024, Nanoscale, 10.1039/D4NR01749H
    Achieving Planar Zn Electroplating in Aqueous Zinc Batteries with Cathode?Compatible Current Densities by Cycling under Pressurehttps://onlinelibrary.wiley.com/doi/10.1002/adma.202401576Li, Zixuan; Yuan, Yi; Pu, Shengda D.; Qi, Rui; Ding, Shenghuan; Qin, Runzhi; Kareer, Anna; Bruce, Peter G.; Robertson, Alex W. , Achieving Planar Zn Electroplating in Aqueous Zinc Batteries with Cathode?Compatible Current Densities by Cycling under Pressure, 2024, Advanced Materials, 10.1002/adma.202401576
    Understanding the Growth of Electrodeposited PtNi Nanoparticle Films Using Correlated In Situ Liquid Cell Transmission Electron Microscopy and Synchrotron Radiationhttps://pubs.acs.org/doi/10.1021/acs.nanolett.4c02228Parlinska-Wojtan, Magdalena; Tarnawski, Tomasz Roman; Depciuch, Joanna; De Marco, Maria Letizia; Sobczak, Kamil; Matlak, Krzysztof; Pawlyta, Miros?awa; Schaeublin, Robin E.; Chee, See Wee , Understanding the Growth of Electrodeposited PtNi Nanoparticle Films Using Correlated In Situ Liquid Cell Transmission Electron Microscopy and Synchrotron Radiation, 2024, Nano Letters, 10.1021/acs.nanolett.4c02228
    Effects of salinity on the microscopic interaction and sedimentation behavior of halloysite nanotubehttps://linkinghub.elsevier.com/retrieve/pii/S016913172400259XKwon, Yeong-Man; Noh, Namgyu; Dae, Kyun-Seong; Qureshi, Yusra; Kwon, Ji-Hwan; Cho, Gye-Chun; Chang, Ilhan; Yuk, Jong Min , Effects of salinity on the microscopic interaction and sedimentation behavior of halloysite nanotube, 2024, Applied Clay Science, 10.1016/j.clay.2024.107511
    Engineering and direct imaging of nanocube self-assembly pathwayshttps://www.nature.com/articles/s44286-024-00102-9Zhong, Yaxu; Moore, Timothy C.; Dwyer, Tobias; Batrum-Griffith, Alex; Allen, Vincent R.; Chen, Jun; Wang, Ji; Cheng, Fanrui; Glotzer, Sharon C.; Ye, Xingchen , Engineering and direct imaging of nanocube self-assembly pathways, 2024, Nature Chemical Engineering, 10.1038/s44286-024-00102-9
    Operando Electrodeposition of Nonprecious Metal Copper Nanocatalysts on Low-Dimensional Support Materials for Nitrate Reduction Reactionshttps://pubs.acs.org/doi/10.1021/acsnano.4c04947Tan, Shu Fen; Roslie, Hany; Salim, Teddy; Han, Zengyu; Wu, Dongshuang; Liang, Caihong; Teo, Lim Fong; Lam, Yeng Ming , Operando Electrodeposition of Nonprecious Metal Copper Nanocatalysts on Low-Dimensional Support Materials for Nitrate Reduction Reactions, 2024, ACS Nano, 10.1021/acsnano.4c04947
    Imaging Dissolution Dynamics of Individual NaCl Nanoparticles during Deliquescence with In Situ Transmission Electron Microscopyhttps://pubs.acs.org/doi/10.1021/acs.est.4c02356Wang, Yuhang; Rastogi, Dewansh; Malek, Kotiba; Sun, Jiayue; Ahn, Martin; Asa-Awuku, Akua; Woehl, Taylor , Imaging Dissolution Dynamics of Individual NaCl Nanoparticles during Deliquescence with In Situ Transmission Electron Microscopy, 2024, Environmental Science and Technology, https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.4c02356&ref=pdf
    New Avenues for Capturing Mineralization Events at Biomaterial Interfaces with Liquid-Transmission Electron Microscopyhttps://pubs.acs.org/doi/10.1021/acs.nanolett.4c01525DiCecco, Liza-Anastasia; Zhang, Jing; Casagrande, Travis; Grandfield, Kathryn , New Avenues for Capturing Mineralization Events at Biomaterial Interfaces with Liquid-Transmission Electron Microscopy, 2024, Nano Letters, 10.1021/acs.nanolett.4c01525
    Insight into the Internal Structure of High-Performance Multicore Magnetic Nanoparticles Used in Cancer Thermotherapyhttps://pubs.acs.org/doi/10.1021/acsmaterialsau.4c00021Roussel, Tom; Ferry, Daniel; Kosta, Artemis; Miele, Dalila; Sandri, Giuseppina; Tansi, Felista L.; Steiniger, Frank; Southern, Paul; Pankhurst, Quentin A.; Peng, Ling; Giorgio, Suzanne , Insight into the Internal Structure of High-Performance Multicore Magnetic Nanoparticles Used in Cancer Thermotherapy, 2024, ACS Materials Au, 10.1021/acsmaterialsau.4c00021
    Coupling Liquid Electrochemical TEM and Mass?Spectrometry to Investigate Electrochemical Reactions Occurring in a Na?Ion Battery Anodehttps://onlinelibrary.wiley.com/doi/10.1002/smtd.202400365Gallegos?Moncayo, Kevyn; Folastre, Nicolas; Toledo, Milan; Tonnoir, Hélène; Rabuel, François; Gachot, Grégory; Huo, Da; Demortière, Arnaud , Coupling Liquid Electrochemical TEM and Mass?Spectrometry to Investigate Electrochemical Reactions Occurring in a Na?Ion Battery Anode, 2024, Small Methods, 10.1002/smtd.202400365
    Dynamic Evolution of Copper Nanowires during CO 2 Reduction Probed by Operando Electrochemical 4D-STEM and X-ray Spectroscopyhttps://pubs.acs.org/doi/10.1021/jacs.4c06480Yang, Yao; Shi, Chuqiao; Feijóo, Julian; Jin, Jianbo; Chen, Chubai; Han, Yimo; Yang, Peidong , Dynamic Evolution of Copper Nanowires during CO 2 Reduction Probed by Operando Electrochemical 4D-STEM and X-ray Spectroscopy, 2024, Journal of the American Chemical Society, 10.1021/jacs.4c06480
    Investigating Charge-Induced Transformations of Metal Nanoparticles in a Radically-Inert Liquid: A Liquid-Cell TEM Studyhttps://www.mdpi.com/2079-4991/14/21/1709Koo, Kunmo; Seo, Jong Hyeok; Lee, Joohyun; Lee, Sooheyong; Kwon, Ji-Hwan , Investigating Charge-Induced Transformations of Metal Nanoparticles in a Radically-Inert Liquid: A Liquid-Cell TEM Study, 2024, Nanomaterials, 10.3390/nano14211709
    Advanced electrode design enables homogeneous electric field distribution for metal deposition studies via in situ liquid cell TEMhttps://linkinghub.elsevier.com/retrieve/pii/S2589004224023447Wei, Xin; Noyong, Michael; Simon, Ulrich , Advanced electrode design enables homogeneous electric field distribution for metal deposition studies via in situ liquid cell TEM, 2024, iScience, 10.1016/j.isci.2024.111119
    In Situ Liquid Electron Microscope Cells Strongly Attenuate Electrochemical Behaviorhttps://iopscience.iop.org/article/10.1149/1945-7111/ad963aWittman, Reed M; Sacci, Robert L; Unocic, Ray; Zawodzinski, Thomas , In Situ Liquid Electron Microscope Cells Strongly Attenuate Electrochemical Behavior, 2024, Journal of The Electrochemical Society, 10.1149/1945-7111/ad963a
    Deposition of Nanometric Polymer–Surfactant Complexes Formed by Cationic Dextran: A Path to Sustainable Formulationshttps://pubs.acs.org/doi/10.1021/acs.langmuir.4c02860Faizi, Hammad A.; Miller, Daniel S.; Leal, Lyndsay; Gu, Junsi; Pacholski, Michaeleen L.; Partain Iii, Emmett M.; Nimako-Boateng, Caroline; McMillan, Janet R.; Qian, Chang; Wang, Zuochen; Chen, Qian , Deposition of Nanometric Polymer–Surfactant Complexes Formed by Cationic Dextran: A Path to Sustainable Formulations, 2024, Langmuir, 10.1021/acs.langmuir.4c02860
    Quantification of reagent mixing in liquid flow cells for Liquid Phase-TEMhttps://www.sciencedirect.com/science/article/pii/S0304399122001735Merkens, Stefan; De Salvo, Giuseppe; Kruse, Joscha; Modin, Evgenii; Tollan, Christopher; Grzelczak, Marek; Chuvilin, Andrey , Quantification of reagent mixing in liquid flow cells for Liquid Phase-TEM, 2023, Ultramicroscopy, 10.1016/j.ultramic.2022.113654
    The role of an elastic interphase in suppressing gas evolution and promoting uniform electroplating in sodium metal anodeshttp://xlink.rsc.org/?DOI=D2EE02606FGong, Chen; Pu, Shengda D.; Zhang, Shengming; Yuan, Yi; Ning, Ziyang; Yang, Sixie; Gao, Xiangwen; Chau, Chloe; Li, Zixuan; Liu, Junliang; Pi, Liquan; Liu, Boyang; Capone, Isaac; Hu, Bingkun; Melvin, Dominic L. R.; Pasta, Mauro; Bruce, Peter G.; Robertson, Alex W. , The role of an elastic interphase in suppressing gas evolution and promoting uniform electroplating in sodium metal anodes, 2023, Energy & Environmental Science, 10.1039/D2EE02606F
    Shape Transformation Mechanism of Gold Nanoplateshttps://pubs.acs.org/doi/10.1021/acsnano.2c07256Choi, Back Kyu; Kim, Jeongwon; Luo, Zhen; Kim, Joodeok; Kim, Jeong Hyun; Hyeon, Taeghwan; Mehraeen, Shafigh; Park, Sungho; Park, Jungwon , Shape Transformation Mechanism of Gold Nanoplates, 2023, ACS Nano, 10.1021/acsnano.2c07256
    In Situ Tracking of Crystal-Surface-Dependent Cu 2 O Nanoparticle Dissolution in an Aqueous Environmenthttps://pubs.acs.org/doi/abs/10.1021/acs.est.2c07845Wang, Xiangrui; Hung, Tak-Fu; Chen, Fu-Rong; Wang, Wen-Xiong , In Situ Tracking of Crystal-Surface-Dependent Cu 2 O Nanoparticle Dissolution in an Aqueous Environment, 2023, Environmental Science & Technology, 10.1021/acs.est.2c07845
    Quasi/non-equilibrium state in nanobubble growth trajectory revealed by in-situ transmission electron microscopyhttps://linkinghub.elsevier.com/retrieve/pii/S1748013223000105Hu, Hao; Shi, Fenglei; Tieu, Peter; Fu, Benwei; Tao, Peng; Song, Chengyi; Shang, Wen; Pan, Xiaoqing; Deng, Tao; Wu, Jianbo , Quasi/non-equilibrium state in nanobubble growth trajectory revealed by in-situ transmission electron microscopy, 2023, Nano Today, 10.1016/j.nantod.2023.101761
    Operando studies reveal active Cu nanograins for CO2 electroreductionhttps://www.nature.com/articles/s41586-022-05540-0Yang, Yao; Louisia, Sheena; Yu, Sunmoon; Jin, Jianbo; Roh, Inwhan; Chen, Chubai; Fonseca Guzman, Maria V.; Feijóo, Julian; Chen, Peng-Cheng; Wang, Hongsen; Pollock, Christopher J.; Huang, Xin; Shao, Yu-Tsun; Wang, Cheng; Muller, David A.; Abruña, Héctor D.; Yang, Peidong , Operando studies reveal active Cu nanograins for CO2 electroreduction, 2023, Nature, 10.1038/s41586-022-05540-0
    In situ single particle characterization of the themoresponsive and co-nonsolvent behavior of PNIPAM microgels and silica@PNIPAM core-shell colloidshttps://linkinghub.elsevier.com/retrieve/pii/S0021979722022640Grau-Carbonell, Albert; Hagemans, Fabian; Bransen, Maarten; Elbers, Nina A.; van Dijk-Moes, Relinde J.A.; Sadighikia, Sina; Welling, Tom A.J.; van Blaaderen, Alfons; van Huis, Marijn A. , In situ single particle characterization of the themoresponsive and co-nonsolvent behavior of PNIPAM microgels and silica@PNIPAM core-shell colloids, 2023, Journal of Colloid and Interface Science, 10.1016/j.jcis.2022.12.116
    Electric Field-Induced Water Condensation Visualized by Vapor-Phase Transmission Electron Microscopyhttps://pubs.acs.org/doi/10.1021/acs.jpca.2c08187Wang, Yuhang; Rastogi, Dewansh; Malek, Kotiba; Sun, Jiayue; Asa-Awuku, Akua; Woehl, Taylor J. , Electric Field-Induced Water Condensation Visualized by Vapor-Phase Transmission Electron Microscopy, 2023, The Journal of Physical Chemistry A, 10.1021/acs.jpca.2c08187
    Operando Liquid-Phase TEM Experiments for the Investigation of Dissolution Kinetics: Application to Li-Ion Battery Materialshttps://academic.oup.com/mam/article/29/1/105/6927146Poulizac, Julie; Boulineau, Adrien; Billy, Emmanuel; Masenelli-Varlot, Karine , Operando Liquid-Phase TEM Experiments for the Investigation of Dissolution Kinetics: Application to Li-Ion Battery Materials, 2023, Microscopy and Microanalysis, 10.1093/micmic/ozac025
    Resolution of MoS 2 Nanosheets?Induced Pulmonary Inflammation Driven by Nanoscale Intracellular Transformation and Extracellular?Vesicle Shuttleshttps://onlinelibrary.wiley.com/doi/10.1002/adma.202209615Ortiz Peña, Nathaly; Cherukula, Kondareddy; Even, Benjamin; Ji, Ding?Kun; Razafindrakoto, Sarah; Peng, Shiyuan; Silva, Amanda K. A.; Ménard?Moyon, Cécilia; Hillaireau, Hervé; Bianco, Alberto; Fattal, Elias; Alloyeau, Damien; Gazeau, Florence , Resolution of MoS 2 Nanosheets?Induced Pulmonary Inflammation Driven by Nanoscale Intracellular Transformation and Extracellular?Vesicle Shuttles, 2023, Advanced Materials, 10.1002/adma.202209615
    Understanding the sulphur-oxygen exchange process of metal sulphides prior to oxygen evolution reactionhttps://www.nature.com/articles/s41467-023-37751-yHu, Yang; Zheng, Yao; Jin, Jing; Wang, Yantao; Peng, Yong; Yin, Jie; Shen, Wei; Hou, Yichao; Zhu, Liu; An, Li; Lu, Min; Xi, Pinxian; Yan, Chun-Hua , Understanding the sulphur-oxygen exchange process of metal sulphides prior to oxygen evolution reaction, 2023, Nature Communications, 10.1038/s41467-023-37751-y
    In-situ observation of preparation of PLGA polymeric nanoparticles using liquid cell transmission electron microscopyhttps://linkinghub.elsevier.com/retrieve/pii/S235249282300867XTakahashi, Chisato , In-situ observation of preparation of PLGA polymeric nanoparticles using liquid cell transmission electron microscopy, 2023, Materials Today Communications, 10.1016/j.mtcomm.2023.106176
    Confinement Effects on the Structure of Entropy?Induced Supercrystalshttps://onlinelibrary.wiley.com/doi/10.1002/smll.202303380Goldmann, Claire; Chaâbani, Wajdi; Hotton, Claire; Impéror?Clerc, Marianne; Moncomble, Adrien; Constantin, Doru; Alloyeau, Damien; Hamon, Cyrille , Confinement Effects on the Structure of Entropy?Induced Supercrystals, 2023, Small, 10.1002/smll.202303380
    In Situ Insights into the Nucleation and Growth Mechanisms of Gold Nanoparticles on Tobacco Mosaic Virushttps://pubs.acs.org/doi/10.1021/acs.nanolett.3c01311Moreira Da Silva, Cora; Ortiz-Peña, Nathaly; Boubekeur-Lecaque, Leïla; Dušek, Jakub; Moravec, Tomáš; Alloyeau, Damien; Ha-Duong, Nguyêt-Thanh , In Situ Insights into the Nucleation and Growth Mechanisms of Gold Nanoparticles on Tobacco Mosaic Virus, 2023, Nano Letters, 10.1021/acs.nanolett.3c01311
    Goethite Mineral Dissolution to Probe the Chemistry of Radiolytic Water in Liquid?Phase Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/10.1002/advs.202301904Couasnon, Thaïs; Fritsch, Birk; Jank, Michael P. M.; Blukis, Roberts; Hutzler, Andreas; Benning, Liane G. , Goethite Mineral Dissolution to Probe the Chemistry of Radiolytic Water in Liquid?Phase Transmission Electron Microscopy, 2023, Advanced Science, 10.1002/advs.202301904
    Probing Sodium Storage Mechanism in Hollow Carbon Nanospheres Using Liquid Phase Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/10.1002/smll.202301415Hou, Jing; Song, Zihan; Odziomek, Mateusz; Tarakina, Nadezda V. , Probing Sodium Storage Mechanism in Hollow Carbon Nanospheres Using Liquid Phase Transmission Electron Microscopy, 2023, Small, 10.1002/smll.202301415
    Upper critical solution temperature polymer assemblies via variable temperature liquid phase transmission electron microscopy and liquid resonant soft X-ray scatteringhttps://www.nature.com/articles/s41467-023-38781-2Korpanty, Joanna; Wang, Cheng; Gianneschi, Nathan C. , Upper critical solution temperature polymer assemblies via variable temperature liquid phase transmission electron microscopy and liquid resonant soft X-ray scattering, 2023, Nature Communications, 10.1038/s41467-023-38781-2
    Unraveling Anisotropic and Pulsating Etching of ZnO Nanorods in Hydrochloric Acid via Correlative Electron Microscopyhttps://pubs.acs.org/doi/10.1021/acsnano.3c02940Liu, Fangyuan; Lu, Xingxu; Zhu, Chunxiang; Bian, Zichao; Song, Xiaohui; Sun, Jiyu; Zhang, Bo; Weng, Junfei; Subramanian, Ashwanth; Tong, Xiao; Zhang, Lichun; Dongare, Avinash M.; Nam, Chang-Yong; Ding, Yong; Zheng, Guoan; Tan, Haiyan; Gao, Pu-Xian , Unraveling Anisotropic and Pulsating Etching of ZnO Nanorods in Hydrochloric Acid via Correlative Electron Microscopy, 2023, ACS Nano, 10.1021/acsnano.3c02940
    A Machine-Vision Approach to Transmission Electron Microscopy Workflows, Results Analysis and Data Managementhttps://www.jove.com/t/65446/a-machine-vision-approach-to-transmission-electron-microscopyDukes, Madeline Dressel; Krans, Nynke Albertine; Marusak, Katherine; Walden, Stamp; Eldred, Tim; Franks, Alan; Larson, Ben; Guo, Yaofeng; Nackashi, David; Damiano, John , A Machine-Vision Approach to Transmission Electron Microscopy Workflows, Results Analysis and Data Management, 2023, Journal of Visualized Experiments, 10.3791/65446
    Non-classical crystallization of CeO 2 by means of in situ electron microscopyhttp://xlink.rsc.org/?DOI=D3NR02400HZschiesche, Hannes; Soroka, Inna L.; Jonsson, Mats; Tarakina, Nadezda V. , Non-classical crystallization of CeO 2 by means of in situ electron microscopy, 2023, Nanoscale, 10.1039/D3NR02400H
    Activating dynamic atomic-configuration for single-site electrocatalyst in electrochemical CO2 reductionhttps://www.nature.com/articles/s41467-023-40970-yHsu, Chia-Shuo; Wang, Jiali; Chu, You-Chiuan; Chen, Jui-Hsien; Chien, Chia-Ying; Lin, Kuo-Hsin; Tsai, Li Duan; Chen, Hsiao-Chien; Liao, Yen-Fa; Hiraoka, Nozomu; Cheng, Yuan-Chung; Chen, Hao Ming , Activating dynamic atomic-configuration for single-site electrocatalyst in electrochemical CO2 reduction, 2023, Nature Communications, 10.1038/s41467-023-40970-y
    Shedding Light on the Birth of Hybrid Perovskites: A Correlative Study by In Situ Electron Microscopy and Synchrotron-Based X-ray Scatteringhttps://pubs.acs.org/doi/10.1021/acs.chemmater.3c01167Sidhoum, Charles; Constantin, Doru; Ihiawakrim, Dris; Lenertz, Marc; Bizien, Thomas; Sanchez, Clément; Ersen, Ovidiu , Shedding Light on the Birth of Hybrid Perovskites: A Correlative Study by In Situ Electron Microscopy and Synchrotron-Based X-ray Scattering, 2023, Chemistry of Materials, 10.1021/acs.chemmater.3c01167
    Unraveling and leveraging in situ surface amorphization for enhanced hydrogen evolution reaction in alkaline mediahttps://www.nature.com/articles/s41467-023-42221-6Fu, Qiang; Wong, Lok Wing; Zheng, Fangyuan; Zheng, Xiaodong; Tsang, Chi Shing; Lai, Ka Hei; Shen, Wenqian; Ly, Thuc Hue; Deng, Qingming; Zhao, Jiong , Unraveling and leveraging in situ surface amorphization for enhanced hydrogen evolution reaction in alkaline media, 2023, Nature Communications, 10.1038/s41467-023-42221-6
    Operando Electrochemical Liquid Cell Scanning Transmission Electron Microscopy Investigation of the Growth and Evolution of the Mosaic Solid Electrolyte Interphase for Lithium-Ion Batterieshttps://pubs.acs.org/doi/10.1021/acsnano.3c06879Dachraoui, Walid; Pauer, Robin; Battaglia, Corsin; Erni, Rolf , Operando Electrochemical Liquid Cell Scanning Transmission Electron Microscopy Investigation of the Growth and Evolution of the Mosaic Solid Electrolyte Interphase for Lithium-Ion Batteries, 2023, ACS Nano, 10.1021/acsnano.3c06879
    In Situ Liquid Cell Transmission Electron Microscopy Study of Studtite Particle Formation and Growth via Electron Beam Radiolysishttps://pubs.acs.org/doi/10.1021/acsomega.3c07743Kurtyka, Nick; Van Devener, Brian; Chung, Brandon W.; McDonald, Luther W. , In Situ Liquid Cell Transmission Electron Microscopy Study of Studtite Particle Formation and Growth via Electron Beam Radiolysis, 2023, ACS Omega, 10.1021/acsomega.3c07743
    Functionalized MXene Films with Substantially Improved Low?voltage Actuationhttps://onlinelibrary.wiley.com/doi/10.1002/adma.202307045Chen, Shaohua; Tan, Shu Fen; Singh, Harpreet; Liu, Liang; Etienne, Mathieu; Lee, Pooi See , Functionalized MXene Films with Substantially Improved Low?voltage Actuation, 2023, Advanced Materials, 10.1002/adma.202307045
    Electrochemical liquid phase TEM in aqueous electrolytes for energy applications: the role of liquid flow configurationhttps://www.researchsquare.com/article/rs-3660145/v1Fontana, Marco; Bejtka, Katarzyna; Gho, Cecilia; Merkens, Stefan; Chuvilin, Andrey; Pirri, Candido Fabrizio; Chiodoni, Angelica , Electrochemical liquid phase TEM in aqueous electrolytes for energy applications: the role of liquid flow configuration, 2023, -, 10.21203/rs.3.rs-3660145/v1
    Sacrificial W Facilitates Self-Reconstruction with Abundant Active Sites for Water Oxidationhttps://onlinelibrary.wiley.com/doi/abs/10.1002/smll.202107249Fan, Ke; Zou, Haiyuan; Ding, Yunxuan; Aditya Dharanipragada, N.V.R; Fan, Lizhou; Ken Inge, A.; Duan, Lele; Zhang, Biaobiao; Sun, Licheng , Sacrificial W Facilitates Self-Reconstruction with Abundant Active Sites for Water Oxidation, 2022, Small, 10.1002/smll.202107249
    Liquid-cell transmission electron microscopy for imaging of thermosensitive recombinant polymershttps://linkinghub.elsevier.com/retrieve/pii/S0168365922000931Isaacson, Kyle J.; Van Devener, Brian R.; Steinhauff, Douglas B.; Jensen, M. Martin; Cappello, Joseph; Ghandehari, Hamidreza , Liquid-cell transmission electron microscopy for imaging of thermosensitive recombinant polymers, 2022, Journal of Controlled Release, 10.1016/j.jconrel.2022.02.019
    Operando electrochemical TEM, ex-situ SEM and atomistic modeling studies of MnS dissolution and its role in triggering pitting corrosion in 304L stainless steelhttps://linkinghub.elsevier.com/retrieve/pii/S0010938X22001020Kovalov, Danyil; Taylor, Christopher D.; Heinrich, Helge; Kelly, Robert G. , Operando electrochemical TEM, ex-situ SEM and atomistic modeling studies of MnS dissolution and its role in triggering pitting corrosion in 304L stainless steel, 2022, Corrosion Science, 10.1016/j.corsci.2022.110184
    The influence of l -aspartic acid on calcium carbonate nucleation and growth revealed by in situ liquid phase TEMhttp://xlink.rsc.org/?DOI=D2CE00117ALonguinho, Mariana M.; Ramnarain, Vinavadini; Ortiz Peña, Nathaly; Ihiawakrim, Dris; Soria-Martínez, Rubén; Farina, Marcos; Ersen, Ovidiu; Rossi, André L. , The influence of l -aspartic acid on calcium carbonate nucleation and growth revealed by in situ liquid phase TEM, 2022, CrystEngComm, 10.1039/D2CE00117A
    Nanoscale Faceting and Ligand Shell Structure Dominate the Self-Assembly of Non-Polar Nanoparticles into Superlatticeshttps://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202109093Bo, Arixin; Liu, Yawei; Kuttich, Björn; Kraus, Tobias; Widmer-Cooper, Asaph; De Jonge, Niels , Nanoscale Faceting and Ligand Shell Structure Dominate the Self-Assembly of Non-Polar Nanoparticles into Superlattices, 2022, Advanced Materials, 10.1002/adma.202109093
    Controlling the Shrinkage of 3D Hot Spot Droplets as a Microreactor for Quantitative SERS Detection of Anticancer Drugs in Serum Using a Handheld Raman Spectrometerhttps://pubs.acs.org/doi/10.1021/acs.analchem.2c00071Zhou, Guoliang; Li, Pan; Ge, Meihong; Wang, Junping; Chen, Siyu; Nie, Yuman; Wang, Yaoxiong; Qin, Miao; Huang, Guangyao; Lin, Dongyue; Wang, Hongzhi; Yang, Liangbao , Controlling the Shrinkage of 3D Hot Spot Droplets as a Microreactor for Quantitative SERS Detection of Anticancer Drugs in Serum Using a Handheld Raman Spectrometer, 2022, Analytical Chemistry, 10.1021/acs.analchem.2c00071
    Effect of salinity on the microscopic interaction and sedimentation behavior of halloysite clayhttps://www.researchsquare.com/article/rs-1421994/v1Noh, Namgyu; Kwon, Yeong-Man; Dae, Kyun Seong; Cho, Gye-Chun; Chang, Ilhan; Yuk, Jong Min , Effect of salinity on the microscopic interaction and sedimentation behavior of halloysite clay, 2022, Research Square, 10.21203/rs.3.rs-1421994/v1
    Organic solution-phase transmission electron microscopy of copolymer nanoassembly morphology and dynamicshttps://linkinghub.elsevier.com/retrieve/pii/S266638642200039XKorpanty, Joanna; Gnanasekaran, Karthikeyan; Venkatramani, Cadapakam; Zang, Nanzhi; Gianneschi, Nathan C. , Organic solution-phase transmission electron microscopy of copolymer nanoassembly morphology and dynamics, 2022, Cell Reports Physical Science, 10.1016/j.xcrp.2022.100772
    Possible embryo and precursor of crystalline nuclei of calcium carbonate observed by LC-TEMhttp://pubs.rsc.org/en/Content/ArticleLanding/2022/FD/D1FD00125FKimura, Yuki; Katsuno, Hiroyasu; Yamazaki, Tomoya , Possible embryo and precursor of crystalline nuclei of calcium carbonate observed by LC-TEM, 2022, Faraday Discussions, 10.1039/D1FD00125F
    Operando Resonant Soft X-ray Scattering Studies of Chemical Environment and Interparticle Dynamics of Cu Nanocatalysts for CO 2 Electroreductionhttps://pubs.acs.org/doi/10.1021/jacs.2c03662Yang, Yao; Roh, Inwhan; Louisia, Sheena; Chen, Chubai; Jin, Jianbo; Yu, Sunmoon; Salmeron, Miquel B.; Wang, Cheng; Yang, Peidong , Operando Resonant Soft X-ray Scattering Studies of Chemical Environment and Interparticle Dynamics of Cu Nanocatalysts for CO 2 Electroreduction, 2022, Journal of the American Chemical Society, 10.1021/jacs.2c03662
    In-situ characterization of porcine fibroblasts in response to silver ions by Raman spectroscopy and liquid scanning transmission electron microscopyhttps://linkinghub.elsevier.com/retrieve/pii/S0039914022003186Zhao, Yuanfeng; Zhang, Wei; Van Devener, Brian; Bunch, Thomas D.; Zhou, Anhong; Isom, S. Clay , In-situ characterization of porcine fibroblasts in response to silver ions by Raman spectroscopy and liquid scanning transmission electron microscopy, 2022, Talanta, 10.1016/j.talanta.2022.123522
    Design and fabrication of an electrochemical chip for liquid-phase transmission electron microscopyhttps://academic.oup.com/jmicro/advance-article/doi/10.1093/jmicro/dfac023/6580073Sasaki, Yuki; Mizushima, Ayako; Mita, Yoshio; Yoshida, Kaname; Kuwabara, Akihide; Ikuhara, Yuichi , Design and fabrication of an electrochemical chip for liquid-phase transmission electron microscopy, 2022, Microscopy, 10.1093/jmicro/dfac023
    Feasibility of control of particle assembly by dielectrophoresis in liquid-cell transmission electron microscopyhttps://academic.oup.com/jmicro/advance-article/doi/10.1093/jmicro/dfac021/6572748?login=trueYamazaki, Tomoya; Niinomi, Hiromasa; Kimura, Yuki , Feasibility of control of particle assembly by dielectrophoresis in liquid-cell transmission electron microscopy, 2022, Microscopy, https://doi.org/10.1093/jmicro/dfac021
    Metal Monolayers on Command: Underpotential Deposition at Nanocrystal Surfaces: A Quantitative Operando Electrochemical Transmission Electron Microscopy Studyhttps://pubs.acs.org/doi/10.1021/acsenergylett.2c00209Yang, Yao; Shao, Yu-Tsun; DiSalvo, Francis J.; Muller, David A.; Abruña, Héctor D. , Metal Monolayers on Command: Underpotential Deposition at Nanocrystal Surfaces: A Quantitative Operando Electrochemical Transmission Electron Microscopy Study, 2022, ACS Energy Letters, 10.1021/acsenergylett.2c00209
    Liquid-Cell Transmission Electron Microscopy Observation of Two-Step Collapse Dynamics of Silicon Nanopillars on Evaporation of Propan-2-ol: Implications for Semiconductor Integration Densityhttps://pubs.acs.org/doi/10.1021/acsanm.2c01744Sasaki, Yuta; Yamazaki, Tomoya; Kimura, Yuki , Liquid-Cell Transmission Electron Microscopy Observation of Two-Step Collapse Dynamics of Silicon Nanopillars on Evaporation of Propan-2-ol: Implications for Semiconductor Integration Density, 2022, ACS Applied Nano Materials, 10.1021/acsanm.2c01744
    Aerosol Jet Printing as a Versatile Sample Preparation Method for Operando Electrochemical TEM Microdeviceshttps://onlinelibrary.wiley.com/doi/10.1002/admi.202200530Morzy, J?drzej K.; Sartor, Aileen; Dose, Wesley M.; Ou, Canlin; Kar?Narayan, Sohini; De Volder, Michael F. L.; Ducati, Caterina , Aerosol Jet Printing as a Versatile Sample Preparation Method for Operando Electrochemical TEM Microdevices, 2022, Advanced Materials Interfaces, 10.1002/admi.202200530
    In Situ Electron Microscopy Study of the Dynamics of Liquid Flow in Confined Cellshttps://pubs.acs.org/doi/10.1021/acsami.2c05494Zhang, Xiuli; Zhai, Wenbo; Fan, Li; Kim, Franklin; Yu, Yi , In Situ Electron Microscopy Study of the Dynamics of Liquid Flow in Confined Cells, 2022, ACS Applied Materials & Interfaces, 10.1021/acsami.2c05494
    Reliable electrochemical setup for in situ observations with an atmospheric SEMhttps://academic.oup.com/jmicro/advance-article/doi/10.1093/jmicro/dfac028/6605833Yoshida, Kaname; Sasaki, Yuki; Kuwabara, Akihide; Ikuhara, Yuichi , Reliable electrochemical setup for in situ observations with an atmospheric SEM, 2022, Microscopy, 10.1093/jmicro/dfac028
    Radiolysis-Driven Evolution of Gold Nanostructures – Model Verification by Scale Bridging In Situ Liquid-Phase Transmission Electron Microscopy and X-Ray Diffractionhttps://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202202803Fritsch, Birk; zech, T. S.; Bruns, Mark, P.; Körner, Andreas; Khadivianazar, Saba; Wu, Mingjian; Talebi, Neda Zargar; Virtanen, Sannakaisa; Unruh, Tobias; Jank, Michael P. M.; Spiecker, Erdmann; Hutzler, Andreas , Radiolysis-Driven Evolution of Gold Nanostructures – Model Verification by Scale Bridging In Situ Liquid-Phase Transmission Electron Microscopy and X-Ray Diffraction, 2022, Advanced Science, 10.1002/advs.202202803
    Frequency-controlled electrophoretic mobility of a particle within a porous, hollow shellhttps://linkinghub.elsevier.com/retrieve/pii/S0021979722012723Welling, Tom A.J.; Grau-Carbonell, Albert; Watanabe, Kanako; Nagao, Daisuke; de Graaf, Joost; van Huis, Marijn A.; van Blaaderen, Alfons , Frequency-controlled electrophoretic mobility of a particle within a porous, hollow shell, 2022, Journal of Colloid and Interface Science, 10.1016/j.jcis.2022.07.091
    Live Visualization of the Nucleation and Growth of Needle-Like Hydroxyapatite Crystals in Solution by In Situ TEMhttps://pubs.acs.org/doi/10.1021/acs.cgd.2c00296Dalmônico, Gisele M. L.; Ihiawakrim, Dris; Ortiz, Nathaly; Barreto Junior, Amaro Gomes; Curitiba Marcellos, Caio Felippe; Farina, Marcos; Ersen, Ovidiu; Rossi, Andre L. , Live Visualization of the Nucleation and Growth of Needle-Like Hydroxyapatite Crystals in Solution by In Situ TEM, 2022, Crystal Growth & Design, 10.1021/acs.cgd.2c00296
    Mechanism and Control of Saponite Synthesis from a Self-Assembling Nanocrystalline Precursorhttps://pubs.acs.org/doi/10.1021/acs.langmuir.2c00425Blukis, Roberts; Schindler, Maria; Couasnon, Thaïs; Benning, Liane G. , Mechanism and Control of Saponite Synthesis from a Self-Assembling Nanocrystalline Precursor, 2022, Langmuir, 10.1021/acs.langmuir.2c00425
    Multistep Crystallization of Dynamic Nanoparticle Superlattices in Nonaqueous Solutionshttps://pubs.acs.org/doi/10.1021/jacs.2c06535Zhong, Yaxu; Allen, Vincent R.; Chen, Jun; Wang, Yi; Ye, Xingchen , Multistep Crystallization of Dynamic Nanoparticle Superlattices in Nonaqueous Solutions, 2022, Journal of the American Chemical Society, 10.1021/jacs.2c06535
    In situ liquid transmission electron microscopy reveals self-assembly-driven nucleation in radiolytic synthesis of iron oxide nanoparticles in organic mediahttp://xlink.rsc.org/?DOI=D2NR01511KOrtiz Peña, Nathaly; Ihiawakrim, Dris; Cre?u, Sorina; Cotin, Geoffrey; Kiefer, Céline; Begin-Colin, Sylvie; Sanchez, Clément; Portehault, David; Ersen, Ovidiu , In situ liquid transmission electron microscopy reveals self-assembly-driven nucleation in radiolytic synthesis of iron oxide nanoparticles in organic media, 2022, Nanoscale, 10.1039/D2NR01511K
    Monitoring of CaCO3 Nanoscale Structuration through Real-Time Liquid Phase Transmission Electron Microscopy and Hyperpolarized NMRhttps://pubs.acs.org/doi/10.1021/jacs.2c05731Ramnarain, Vinavadini; Georges, Tristan; Ortiz Peña, Nathaly; Ihiawakrim, Dris; Longuinho, Mariana; Bulou, Hervé; Gervais, Christel; Sanchez, Clément; Azaïs, Thierry; Ersen, Ovidiu , Monitoring of CaCO3 Nanoscale Structuration through Real-Time Liquid Phase Transmission Electron Microscopy and Hyperpolarized NMR, 2022, Journal of the American Chemical Society, 10.1021/jacs.2c05731
    Elucidating Cathodic Corrosion Mechanisms with Operando Electrochemical Transmission Electron Microscopyhttps://pubs.acs.org/doi/10.1021/jacs.2c05989Yang, Yao; Shao, Yu-Tsun; Lu, Xinyao; Yang, Yan; Ko, Hsin-Yu; Jr, Robert A DiStasio; DiSalvo, Francis J; Muller, David A; Abruña, Héctor D , Elucidating Cathodic Corrosion Mechanisms with Operando Electrochemical Transmission Electron Microscopy, 2022, Journal of the American Chemical Society, 10.1021/jacs.2c05989
    The effects of nano-silica on early-age hydration reactions of nano Portland cementhttps://linkinghub.elsevier.com/retrieve/pii/S0958946522002918Dong, Peng; Allahverdi, Ali; Andrei, Carmen M.; Bassim, Nabil D. , The effects of nano-silica on early-age hydration reactions of nano Portland cement, 2022, Cement and Concrete Composites, 10.1016/j.cemconcomp.2022.104698
    Moisture-Induced Non-Equilibrium Phase Segregation inTriple Cation Mixed Halide Perovskite Monitored byIn SituCharacterization Techniques and Solid-State NMRhttps://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12335Kazemi, Mohammead Ali Akhavan; Folastre, Nicolas; Raval, Parth; Sliwa, Michel; Nsanzimana, Jean Marie Vianney; Golonu, Sema; Demortiere, Arnaud; Rousset, Jean; Lafon, Olivier; Delevoye, Laurent; Manjunatha Reddy, G.N.; Sauvage, Frédéric , Moisture-Induced Non-Equilibrium Phase Segregation inTriple Cation Mixed Halide Perovskite Monitored byIn SituCharacterization Techniques and Solid-State NMR, 2022, Energy & Environmental Materials, https://www.doi.org/10.1002/eem2.12335
    Direct Observation of Emulsion Morphology, Dynamics, and Demulsificationhttps://pubs.acs.org/doi/10.1021/acsnano.2c00199Vratsanos, Maria A.; Gianneschi, Nathan C. , Direct Observation of Emulsion Morphology, Dynamics, and Demulsification, 2022, ACS Nano, 10.1021/acsnano.2c00199
    Observation of H 2 Evolution and Electrolyte Diffusion on MoS 2 Monolayer by in situ Liquid?phase Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/10.1002/adma.202206066Kim, Jihoon; Park, Anseong; Kim, Joodeok; Kwak, Seung Jae; Lee, Jae Yoon; Lee, Donghoon; Kim, Sebin; Choi, Back Kyu; Kim, Sungin; Kwag, Jimin; Kim, Younhwa; Jeon, Sungho; Lee, Won Chul; Hyeon, Taeghwan; Lee, Chul?Ho; Lee, Won Bo; Park, Jungwon , Observation of H 2 Evolution and Electrolyte Diffusion on MoS 2 Monolayer by in situ Liquid?phase Transmission Electron Microscopy, 2022, Advanced Materials, 10.1002/adma.202206066
    Metastable hexagonal close-packed palladium hydride in liquid cell TEMhttps://www.nature.com/articles/s41586-021-04391-5Hong, Jaeyoung; Bae, Jee-Hwan; Jo, Hyesung; Park, Hee-Young; Lee, Sehyun; Hong, Sung Jun; Chun, Hoje; Cho, Min Kyung; Kim, Juyoung; Kim, Joodeok; Son, Yongju; Jin, Haneul; Suh, Jin-Yoo; Kim, Sung-Chul; Roh, Ha-Kyung; Lee, Kyu Hyoung; Kim, Hyung-Seok; Chung, Kyung Yoon; Yoon, Chang Won; Lee, Kiryeong; Kim, Seo Hee; Ahn, Jae-Pyoung; Baik, Hionsuck; Kim, Gyeung Ho; Han, Byungchan; Jin, Sungho; Hyeon, Taeghwan; Park, Jungwon; Son, Chang Yun; Yang, Yongsoo; Lee, Young-Su; Yoo, Sung Jong; Chun, Dong Won , Metastable hexagonal close-packed palladium hydride in liquid cell TEM, 2022, Nature, 10.1038/s41586-021-04391-5
    Atomic-level structural responsiveness to environmental conditions from 3D electron diffractionhttps://www.nature.com/articles/s41467-022-34237-1Ling, Yang; Sun, Tu; Guo, Linshuo; Si, Xiaomeng; Jiang, Yilan; Zhang, Qing; Chen, Zhaoxi; Terasaki, Osamu; Ma, Yanhang , Atomic-level structural responsiveness to environmental conditions from 3D electron diffraction, 2022, Nature Communications, 10.1038/s41467-022-34237-1
    Discovering the nanoscale origins of localized corrosion in additive manufactured stainless steel 316L by liquid cell transmission electron microscopyhttps://www.sciencedirect.com/science/article/pii/S0010938X22005777Tian, Mengkun; Choundraj, Jahnavi Desai; Voisin, Thomas; Wang, Y. Morris; Kacher, Josh , Discovering the nanoscale origins of localized corrosion in additive manufactured stainless steel 316L by liquid cell transmission electron microscopy, 2022, Corrosion Science, 10.1016/j.corsci.2022.110659
    Use of a Bipolar, Metallic Luggin-Haber Probe for Electrochemical Measurements of Interfacial Potentialhttps://iopscience.iop.org/article/10.1149/1945-7111/aca367Choudhary, Sanjay; Marusak, Katherine Elizabeth; Eldred, Timothy; Kelly, Robert , Use of a Bipolar, Metallic Luggin-Haber Probe for Electrochemical Measurements of Interfacial Potential, 2022, Journal of The Electrochemical Society, 10.1149/1945-7111/aca367
    In Situ Three-Dimensional Electron Diffraction for Probing Structural Transformations of Single Nanocrystalshttps://pubs.acs.org/doi/10.1021/acs.chemmater.2c01744Wu, Shitao; Li, Junyan; Ling, Yang; Sun, Tu; Fan, Yaqi; Yu, Jihong; Terasaki, Osamu; Ma, Yanhang , In Situ Three-Dimensional Electron Diffraction for Probing Structural Transformations of Single Nanocrystals, 2022, Chem. Mater., https://doi.org/10.1021/acs.chemmater.2c01744
    In Situ Characterization of Carbonate/Oil/Water Interfacial Layers Using Advanced EM Techniques for Enhanced Oil Recoveryhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.2c01932Cha, Dongkyu; Ayirala, Subhash C.; AlOtaibi, Mohammed B.; AlYousef, Ali A. , In Situ Characterization of Carbonate/Oil/Water Interfacial Layers Using Advanced EM Techniques for Enhanced Oil Recovery, 2022, Energy & Fuels, 10.1021/acs.energyfuels.2c01932
    In situ electron microscopy analysis of electrochemical Zn deposition onto an electrodehttp://www.sciencedirect.com/science/article/pii/S0378775320311356Sasaki, Yuki; Yoshida, Kaname; Kawasaki, Tadahiro; Kuwabara, Akihide; Ukyo, Yoshio; Ikuhara, Yuichi , In situ electron microscopy analysis of electrochemical Zn deposition onto an electrode, 2021, Journal of Power Sources, 10.1016/j.jpowsour.2020.228831
    Mechanistic Insights into Nanobubble Merging Studied Using In Situ Liquid-Phase Electron Microscopyhttps://doi.org/10.1021/acs.langmuir.0c03208Nag, Sarthak; Tomo, Yoko; Takahashi, Koji; Kohno, Masamichi , Mechanistic Insights into Nanobubble Merging Studied Using In Situ Liquid-Phase Electron Microscopy, 2021, Langmuir, 10.1021/acs.langmuir.0c03208
    Accessing local electron-beam induced temperature changes during in situ liquid-phase transmission electron microscopyhttps://pubs.rsc.org/en/content/articlelanding/2021/na/d0na01027hFritsch, Birk; Hutzler, Andreas; Wu, Mingjian; Khadivianazar, Saba; Vogl, Lilian; Jank, Michael P. M.; März, Martin; Spiecker, Erdmann , Accessing local electron-beam induced temperature changes during in situ liquid-phase transmission electron microscopy, 2021, Nanoscale Advances, 10.1039/D0NA01027H
    Visualizing Electron Beam-Capping Ligand Reactions for Controlled Nanoparticle Imaging with Liquid Phase Transmission Electron Microscopyhttps://chemrxiv.org/engage/chemrxiv/article-details/60c73cc09abda2727df8b5d8Dissanayake, Thilini Umesha; Wang, Mei; Woehl, Taylor , Visualizing Electron Beam-Capping Ligand Reactions for Controlled Nanoparticle Imaging with Liquid Phase Transmission Electron Microscopy, 2021, ArXiv, 10.26434/chemrxiv.14770797.v1
    Detection of Pb2+ traces in dispersion of Cs4PbBr6 nanocrystals by in situ liquid cell transmission electron microscopyhttps://pubs.rsc.org/en/content/articlelanding/2021/nr/d0nr08584gDang, Zhiya; Manna, Liberato; Baranov, Dmitry , Detection of Pb2+ traces in dispersion of Cs4PbBr6 nanocrystals by in situ liquid cell transmission electron microscopy, 2021, Nanoscale, 10.1039/D0NR08584G
    Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreductionhttp://www.nature.com/articles/s41467-021-20961-7Wang, Xingli; Klingan, Katharina; Klingenhof, Malte; Möller, Tim; Ferreira de Araújo, Jorge; Martens, Isaac; Bagger, Alexander; Jiang, Shan; Rossmeisl, Jan; Dau, Holger; Strasser, Peter , Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction, 2021, Nature Communications, 10.1038/s41467-021-20961-7
    Label-free characterization of organic nanocarriers reveals persistent single molecule cores for hydrocarbon sequestrationhttps://www.nature.com/articles/s41467-021-23382-8McAfee, Terry; Ferron, Thomas; Cordova, Isvar A.; Pickett, Phillip D.; McCormick, Charles L.; Wang, Cheng; Collins, Brian A. , Label-free characterization of organic nanocarriers reveals persistent single molecule cores for hydrocarbon sequestration, 2021, Nature Communications, 10.1038/s41467-021-23382-8
    Revealing the Role of Fluoride-Rich Battery Electrode Interphases by Operando Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.202003118Gong, Chen; Pu, Shengda D.; Gao, Xiangwen; Yang, Sixie; Liu, Junliang; Ning, Ziyang; Rees, Gregory J.; Capone, Isaac; Pi, Liquan; Liu, Boyang; Hartley, Gareth O.; Fawdon, Jack; Luo, Jun; Pasta, Mauro; Grovenor, Chris R. M.; Bruce, Peter G.; Robertson, Alex W. , Revealing the Role of Fluoride-Rich Battery Electrode Interphases by Operando Transmission Electron Microscopy, 2021, Advanced Energy Materials, https://doi.org/10.1002/aenm.202003118
    A polymer controlled nucleation route towards the generalized growth of organic-inorganic perovskite single crystalshttps://www.nature.com/articles/s41467-021-22193-1Ma, Lin; Yan, Zhengguang; Zhou, Xiaoyuan; Pi, Yiqun; Du, Yiping; Huang, Jie; Wang, Kaiwen; Wu, Ke; Zhuang, Chunqiang; Han, Xiaodong , A polymer controlled nucleation route towards the generalized growth of organic-inorganic perovskite single crystals, 2021, Nature Communications, 10.1038/s41467-021-22193-1
    In-situ water-immersion experiments on amorphous silicates in the MgO–SiO2 system: implications for the onset of aqueous alteration in primitive meteoriteshttp://www.sciencedirect.com/science/article/pii/S0016703720306578Igami, Yohei; Tsuchiyama, Akira; Yamazaki, Tomoya; Matsumoto, Megumi; Kimura, Yuki , In-situ water-immersion experiments on amorphous silicates in the MgO–SiO2 system: implications for the onset of aqueous alteration in primitive meteorites, 2021, Geochimica et Cosmochimica Acta, 10.1016/j.gca.2020.10.023
    Observing Growth and Crystallization of Au@ZnO Core–Shell Nanoparticles by In Situ Liquid Cell Transmission Electron Microscopy: Implications for Photocatalysis and Gas-Sensing Applicationshttps://doi.org/10.1021/acsanm.0c02919Tsai, Shin-Bei; Chen, Jui-Yuan; Huang, Chih-Yang; Hou, Szu-Yu; Wu, Wen-Wei , Observing Growth and Crystallization of Au@ZnO Core–Shell Nanoparticles by In Situ Liquid Cell Transmission Electron Microscopy: Implications for Photocatalysis and Gas-Sensing Applications, 2021, ACS Applied Nano Materials, 10.1021/acsanm.0c02919
    Two-step assembly kinetics of gold nanoparticleshttps://pubs.rsc.org/en/content/articlelanding/2021/tc/d0tc05076hLyu, Jieli; Alloyeau, Damien; Hamon, Cyrille; Constantin, Doru , Two-step assembly kinetics of gold nanoparticles, 2021, Journal of Materials Chemistry C, 10.1039/D0TC05076H
    Protein-induced metamorphosis of unilamellar lipid vesicles to multilamellar hybrid vesicleshttp://www.sciencedirect.com/science/article/pii/S0168365921000134Koo, Bon Il; Kim, Inhye; Yang, Moon Young; Jo, Sung Duk; Koo, Kunmo; Shin, Seo Yeon; Park, Kyung Mok; Yuk, Jong Min; Lee, Eunji; Nam, Yoon Sung , Protein-induced metamorphosis of unilamellar lipid vesicles to multilamellar hybrid vesicles, 2021, Journal of Controlled Release, 10.1016/j.jconrel.2021.01.004
    In Situ Probing the Kinetics of Gold Nanoparticle Thermal Sintering in Liquids: Implications for Ink-Jet Printinghttps://doi.org/10.1021/acsanm.0c03133Zhang, Xiuli; Liu, Weiyan; Li, Hailong; Xia, Shuixin; Tsung, Chia-Kuang; Liu, Hao; Liu, Wei; Yu, Yi , In Situ Probing the Kinetics of Gold Nanoparticle Thermal Sintering in Liquids: Implications for Ink-Jet Printing, 2021, ACS Applied Nano Materials, 10.1021/acsanm.0c03133
    Self-similar mesocrystals form via interface-driven nucleation and assemblyhttps://www.nature.com/articles/s41586-021-03300-0Zhu, Guomin; Sushko, Maria L.; Loring, John S.; Legg, Benjamin A.; Song, Miao; Soltis, Jennifer A.; Huang, Xiaopeng; Rosso, Kevin M.; De Yoreo, James J. , Self-similar mesocrystals form via interface-driven nucleation and assembly, 2021, Nature, 10.1038/s41586-021-03300-0
    Controlling radiolysis chemistry on the nanoscale in liquid cell scanning transmission electron microscopyhttps://pubs.rsc.org/en/content/articlelanding/2021/cp/d0cp06369jLee, Juhan; Nicholls, Daniel; Browning, Nigel D.; Mehdi, B. Layla , Controlling radiolysis chemistry on the nanoscale in liquid cell scanning transmission electron microscopy, 2021, Physical Chemistry Chemical Physics, 10.1039/D0CP06369J
    A NIST facility for resonant soft x-ray scattering measuring nano-scale soft matter structure at NSLS-IIhttps://doi.org/10.1088/1361-648x/abdffbGann, Eliot; Crofts, Thomas; Holland, Glenn; Beaucage, Peter; McAfee, Terry; Kline, R. Joseph; Collins, Brian A.; McNeill, Christopher R.; Fischer, Daniel A.; DeLongchamp, Dean M. , A NIST facility for resonant soft x-ray scattering measuring nano-scale soft matter structure at NSLS-II, 2021, Journal of Physics: Condensed Matter, 10.1088/1361-648X/abdffb
    In Situ Study of the Wet Chemical Etching of SiO2 and Nanoparticle@SiO2 Core–Shell Nanosphereshttps://doi.org/10.1021/acsanm.0c02771Grau-Carbonell, Albert; Sadighikia, Sina; Welling, Tom A. J.; van Dijk-Moes, Relinde J. A.; Kotni, Ramakrishna; Bransen, Maarten; van Blaaderen, Alfons; van Huis, Marijn A. , In Situ Study of the Wet Chemical Etching of SiO2 and Nanoparticle@SiO2 Core–Shell Nanospheres, 2021, ACS Applied Nano Materials, 10.1021/acsanm.0c02771
    Operando Methods in Electrocatalysishttps://doi.org/10.1021/acscatal.0c04789Yang, Yao; Xiong, Yin; Zeng, Rui; Lu, Xinyao; Krumov, Mihail; Huang, Xin; Xu, Weixuan; Wang, Hongsen; DiSalvo, Francis J.; Brock, Joel. D.; Muller, David A.; Abruña, Héctor D. , Operando Methods in Electrocatalysis, 2021, ACS Catalysis, 10.1021/acscatal.0c04789
    Nanoprobes to investigate nonspecific interactions in lipid bilayers: from defect-mediated adhesion to membrane disruptionhttps://pubs.rsc.org/en/content/articlelanding/2021/na/d1na00360gRazza, Nicolò; D. Lavino, Alessio; Fadda, Giulia; Lairez, Didier; Impagnatiello, Andrea; Marchisio, Daniele; Sangermano, Marco; Rizza, Giancarlo , Nanoprobes to investigate nonspecific interactions in lipid bilayers: from defect-mediated adhesion to membrane disruption, 2021, Nanoscale Advances, 10.1039/D1NA00360G
    Understanding the Dynamics of Molecular Water Oxidation Catalysts with Liquid-Phase Transmission Electron Microscopy: The Case of Vitamin B12https://doi.org/10.1021/acssuschemeng.1c03539Abdi, Zahra; Balaghi, S. Esmael; Sologubenko, Alla S.; Willinger, Marc-Georg; Vandichel, Matthias; Shen, Jian-Ren; Allakhverdiev, Suleyman I.; Patzke, Greta R.; Najafpour, Mohammad Mahdi , Understanding the Dynamics of Molecular Water Oxidation Catalysts with Liquid-Phase Transmission Electron Microscopy: The Case of Vitamin B12, 2021, ACS Sustainable Chemistry & Engineering, 10.1021/acssuschemeng.1c03539
    Direct Observation of Liquid-to-Solid Phase Transformations during the Electrochemical Deposition of Poly(3,4-ethylenedioxythiophene) (PEDOT) by Liquid-Phase Transmission Electron Microscopy (LPTEM)https://doi.org/10.1021/acs.macromol.1c00404Subramanian, Vivek; Martin, David C. , Direct Observation of Liquid-to-Solid Phase Transformations during the Electrochemical Deposition of Poly(3,4-ethylenedioxythiophene) (PEDOT) by Liquid-Phase Transmission Electron Microscopy (LPTEM), 2021, Macromolecules, 10.1021/acs.macromol.1c00404
    Probing morphology and chemistry in complex soft materials with in situ resonant soft x-ray scatteringhttps://doi.org/10.1088/1361-648x/ac0194Zhong, Wenkai; Liu, Feng; Wang, Cheng , Probing morphology and chemistry in complex soft materials with in situ resonant soft x-ray scattering, 2021, Journal of Physics: Condensed Matter, 10.1088/1361-648X/ac0194
    Quantitative In Situ Visualization of Thermal Effects on the Formation of Gold Nanocrystals in Solutionhttps://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202102514Khelfa, Abdelali; Nelayah, Jaysen; Amara, Hakim; Wang, Guillaume; Ricolleau, Christian; Alloyeau, Damien , Quantitative In Situ Visualization of Thermal Effects on the Formation of Gold Nanocrystals in Solution, 2021, Advanced Materials, 10.1002/adma.202102514
    Direct Observation of Oxygen Evolution and Surface Restructuring on Mn2O3 Nanocatalysts Using In Situ and Ex Situ Transmission Electron Microscopy | Nano Lettershttps://pubs.acs.org/doi/10.1021/acs.nanolett.1c02378?goto=articleMetrics&ref=pdfZhao, Guangming; Yao, Yunduo; Lu, Wei; Guo, Xuyun; Trucoli, Antonio; Zhu, Ye , Direct Observation of Oxygen Evolution and Surface Restructuring on Mn2O3 Nanocatalysts Using In Situ and Ex Situ Transmission Electron Microscopy | Nano Letters, 2021, Nano Letters, 10.1021/acs.nanolett.1c02378
    Revealing Reactions between the Electron Beam and Nanoparticle Capping Ligands with Correlative Fluorescence and Liquid-Phase Electron Microscopyhttps://doi.org/10.1021/acsami.1c10957Dissanayake, Thilini U.; Wang, Mei; Woehl, Taylor J. , Revealing Reactions between the Electron Beam and Nanoparticle Capping Ligands with Correlative Fluorescence and Liquid-Phase Electron Microscopy, 2021, ACS Applied Materials & Interfaces, 10.1021/acsami.1c10957
    In situ liquid cell transmission electron microscopy guiding the design of large-sized cocatalysts coupled with ultra-small photocatalysts for highly efficient energy harvestinghttp://xlink.rsc.org/?DOI=D1TA02975DGao, Chunlang; Zhuang, Chunqiang; Li, Yuanli; Qi, Heyang; Chen, Ge; Sun, Zaicheng; Zou, Jin; Han, Xiaodong , In situ liquid cell transmission electron microscopy guiding the design of large-sized cocatalysts coupled with ultra-small photocatalysts for highly efficient energy harvesting, 2021, Journal of Materials Chemistry A, 10.1039/D1TA02975D
    Accelerated decomposition of Bi2S3 nanorods in water under an electron beam: a liquid phase transmission electron microscopy studyhttps://doi.org/10.1088/1361-6528/abe150Kim, Su Yeon; Kim, Ji Hyeon; Jeong, Taehyeon; Kim, Kyung Bin; Kim, Hyung Joong; Nam, Ki Min; Ahn, Sang Jung; Kwon, Ji Hwan; Kim, Young Heon , Accelerated decomposition of Bi2S3 nanorods in water under an electron beam: a liquid phase transmission electron microscopy study, 2021, Nanotechnology, 10.1088/1361-6528/abe150
    Anomalous nanoparticle surface diffusion in LCTEM is revealed by deep learning-assisted analysishttps://www.pnas.org/content/118/10/e2017616118Jamali, Vida; Hargus, Cory; Ben-Moshe, Assaf; Aghazadeh, Amirali; Ha, Hyun Dong; Mandadapu, Kranthi K.; Alivisatos, A. Paul , Anomalous nanoparticle surface diffusion in LCTEM is revealed by deep learning-assisted analysis, 2021, Proceedings of the National Academy of Sciences, 10.1073/pnas.2017616118
    Ultra-small size gelatin nanogel as a blood brain barrier impermeable contrast agent for magnetic resonance imaginghttps://www.sciencedirect.com/science/article/pii/S1742706121001021Kimura, Atsushi; Jo, Jun-ichiro; Yoshida, Fumiya; Hong, Zhang; Tabata, Yasuhiko; Sumiyoshi, Akira; Taguchi, Mitsumasa; Aoki, Ichio , Ultra-small size gelatin nanogel as a blood brain barrier impermeable contrast agent for magnetic resonance imaging, 2021, Acta Biomaterialia, 10.1016/j.actbio.2021.02.016
    Radiolysis-Induced Crystallization of Sodium Chloride in Acetone by Electron Beam Irradiationhttps://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/abs/radiolysisinduced-crystallization-of-sodium-chloride-in-acetone-by-electron-beam-irradiation/77287828D8575909EBA1DC87CE6F9784Yamazaki, Tomoya; Kimura, Yuki , Radiolysis-Induced Crystallization of Sodium Chloride in Acetone by Electron Beam Irradiation, 2021, Microscopy and Microanalysis, 10.1017/S1431927621000179
    In Situ Atomic-Scale TEM Observation of Ag Nanoparticle-Mediated Coalescence in Liquidshttp://www.sciencedirect.com/science/article/pii/S0169433221001331Hou, Szu-Yu; Huang, Chih-Yang; Tsai, Shin-Bei; Chen, Jui-Yuan; Wu, Wen-Wei , In Situ Atomic-Scale TEM Observation of Ag Nanoparticle-Mediated Coalescence in Liquids, 2021, Applied Surface Science, 10.1016/j.apsusc.2021.149057
    Shape Transformation Mechanism of Gallium–Indium Alloyed Liquid Metal Nanoparticleshttps://onlinelibrary.wiley.com/doi/abs/10.1002/admi.202001874He, Jing; Shi, Fenglei; Wu, Jianbo; Ye, Jian , Shape Transformation Mechanism of Gallium–Indium Alloyed Liquid Metal Nanoparticles, 2021, Advanced Materials Interfaces, https://doi.org/10.1002/admi.202001874
    Atomistic insights into the nucleation and growth of platinum on palladium nanocrystalshttps://www.nature.com/articles/s41467-021-23290-xGao, Wenpei; Elnabawy, Ahmed O.; Hood, Zachary D.; Shi, Yifeng; Wang, Xue; Roling, Luke T.; Pan, Xiaoqing; Mavrikakis, Manos; Xia, Younan; Chi, Miaofang , Atomistic insights into the nucleation and growth of platinum on palladium nanocrystals, 2021, Nature Communications, 10.1038/s41467-021-23290-x
    Thermoresponsive polymer assemblies via variable temperature liquid-phase transmission electron microscopy and small angle X-ray scatteringhttps://www.nature.com/articles/s41467-021-26773-zKorpanty, Joanna; Parent, Lucas R.; Hampu, Nicholas; Weigand, Steven; Gianneschi, Nathan C. , Thermoresponsive polymer assemblies via variable temperature liquid-phase transmission electron microscopy and small angle X-ray scattering, 2021, Nature Communications, 10.1038/s41467-021-26773-z
    Pitfalls in Electrochemical Liquid Cell Transmission Electron Microscopy for Dendrite Observationhttps://onlinelibrary.wiley.com/doi/abs/10.1002/aesr.202100160Zhang, Xiuli; Liu, Weiyan; Chen, Zhaoxi; Huang, Yifan; Liu, Wei; Yu, Yi , Pitfalls in Electrochemical Liquid Cell Transmission Electron Microscopy for Dendrite Observation, 2021, Advanced Energy and Sustainability Research, 10.1002/aesr.202100160
    Assembly of Two-Dimensional Metal Organic Framework Superstructures via Solvent-Mediated Oriented Attachmenthttps://doi.org/10.1021/acs.jpcc.1c06699Jose, Nicholas A.; Varghese, Jithin John; Mushrif, Samir H.; Zeng, Hua Chun; Lapkin, Alexei A. , Assembly of Two-Dimensional Metal Organic Framework Superstructures via Solvent-Mediated Oriented Attachment, 2021, The Journal of Physical Chemistry C, 10.1021/acs.jpcc.1c06699
    Dipeptide Nanostructure Assembly and Dynamics via in Situ Liquid-Phase Electron Microscopyhttps://doi.org/10.1021/acsnano.1c06130Gnanasekaran, Karthikeyan; Korpanty, Joanna; Berger, Or; Hampu, Nicholas; Halperin-Sternfeld, Michal; Cohen-Gerassi, Dana; Adler-Abramovich, Lihi; Gianneschi, Nathan C. , Dipeptide Nanostructure Assembly and Dynamics via in Situ Liquid-Phase Electron Microscopy, 2021, ACS Nano, 10.1021/acsnano.1c06130
    The five shades of oleylamine in a morphological transition of cobalt nanospheres to nanorodshttps://pubs.rsc.org/en/content/articlelanding/2021/nr/d1nr01502hMoisset, Arthur; Sodreau, Alexandre; Vivien, Anthony; Salzemann, Caroline; Andreazza, Pascal; Giorgio, Suzanne; Petit, Marc; Petit, Christophe , The five shades of oleylamine in a morphological transition of cobalt nanospheres to nanorods, 2021, Nanoscale, 10.1039/D1NR01502H
    On-Chip Electrochemical Analysis Combined with Liquid-Phase Electron Microscopy of Zinc Deposition/Dissolutionhttps://doi.org/10.1149/1945-7111/ac39e0Sasaki, Yuki; Yoshida, Kaname; Kuwabara, Akihide; Ikuhara, Yuichi , On-Chip Electrochemical Analysis Combined with Liquid-Phase Electron Microscopy of Zinc Deposition/Dissolution, 2021, Journal of The Electrochemical Society, 10.1149/1945-7111/ac39e0
    Direct observation of the moment of nucleation from a solution by TEMhttps://doi.org/10.1093/jmicro/dfab046Kimura, Yuki , Direct observation of the moment of nucleation from a solution by TEM, 2021, Microscopy, 10.1093/jmicro/dfab046
    High temporal-resolution scanning transmission electron microscopy using sparse-serpentine scan pathwayshttps://www.nature.com/articles/s41598-021-02052-1Ortega, Eduardo; Nicholls, Daniel; Browning, Nigel D.; de Jonge, Niels , High temporal-resolution scanning transmission electron microscopy using sparse-serpentine scan pathways, 2021, Scientific Reports, 10.1038/s41598-021-02052-1
    Visualizing Ligand-Mediated Bimetallic Nanocrystal Formation Pathways with in Situ Liquid-Phase Transmission Electron Microscopy Synthesishttps://pubs.acs.org/doi/pdf/10.1021/acsnano.0c07131Wang, Mei; Leff, Asher C.; Li, Yue; Woehl, Taylor J. , Visualizing Ligand-Mediated Bimetallic Nanocrystal Formation Pathways with in Situ Liquid-Phase Transmission Electron Microscopy Synthesis, 2021, ACS Nano, 10.1021/acsnano.0c07131
    Dynamic interplay between interfacial nanobubbles: oversaturation promotes anisotropic depinning and bubble coalescencehttps://pubs.rsc.org/en/content/articlelanding/2021/cp/d1cp03451kNag, Sarthak; Tomo, Yoko; Teshima, Hideaki; Takahashi, Koji; Kohno, Masamichi , Dynamic interplay between interfacial nanobubbles: oversaturation promotes anisotropic depinning and bubble coalescence, 2021, Physical Chemistry Chemical Physics, 10.1039/D1CP03451K
    Galvanic Transformation Dynamics in Heterostructured Nanoparticleshttps://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202105866Du, Jingshan S.; He, Kun; Xu, Yaobin; Wahl, Carolin B.; Xu, David D.; Dravid, Vinayak P.; Mirkin, Chad A. , Galvanic Transformation Dynamics in Heterostructured Nanoparticles, 2021, Advanced Functional Materials, 10.1002/adfm.202105866
    In Situ Liquid Electrochemical TEM Investigation of LiMn 1.5 Ni 0.5 O 4 Thin Film Cathode for Micro?Battery Applicationshttps://onlinelibrary.wiley.com/doi/10.1002/smtd.202100891Bhatia, Ankush; Cretu, Sorina; Hallot, Maxime; Folastre, Nicolas; Berthe, Maxime; Troadec, David; Roussel, Pascal; Pereira?Ramos, Jean?Pierre; Baddour?Hadjean, Rita; Lethien, Christophe; Demortière, Arnaud , In Situ Liquid Electrochemical TEM Investigation of LiMn 1.5 Ni 0.5 O 4 Thin Film Cathode for Micro?Battery Applications, 2021, Small Methods, 10.1002/smtd.202100891
    Studying the Effects of Temperature on the Nucleation and Growth of Nanoparticles by Liquid-Cell Transmission Electron Microscopyhttps://www.jove.com/t/62225/studying-effects-temperature-on-nucleation-growth-nanoparticlesKhelfa, Abdelali; Nelayah, Jaysen; Wang, Guillaume; Ricolleau, Christian; Alloyeau, Damien , Studying the Effects of Temperature on the Nucleation and Growth of Nanoparticles by Liquid-Cell Transmission Electron Microscopy, 2021, Journal of Visualized Experiments, 10.3791/62225
    Thickness Dependence of Proton-Exchange-Membrane Propertieshttps://iopscience.iop.org/article/10.1149/1945-7111/ac2973Luo, Xiaoyan; Lau, Grace; Tesfaye, Meron; Arthurs, Claire R.; Cordova, Isvar; Wang, Cheng; Yandrasits, Michael; Kusoglu, Ahmet , Thickness Dependence of Proton-Exchange-Membrane Properties, 2021, Journal of The Electrochemical Society, 10.1149/1945-7111/ac2973
    Understanding Symmetry Breaking at the Single-Particle Level via the Growth of Tetrahedron-Shaped Nanocrystals from Higher-Symmetry Precursorshttps://pubs.acs.org/doi/10.1021/acsnano.1c04056Sun, Muhua; Cheng, Zhihua; Chen, Weiyin; Jones, Matthew , Understanding Symmetry Breaking at the Single-Particle Level via the Growth of Tetrahedron-Shaped Nanocrystals from Higher-Symmetry Precursors, 2021, ACS Nano, 10.1021/acsnano.1c04056
    Mechanistic Understanding of Water Oxidation in the Presence of a Copper Complex by In Situ Electrochemical Liquid Transmission Electron Microscopyhttps://doi.org/10.1021/acsami.1c00243Balaghi, S. Esmael; Mehrabani, Somayeh; Mousazade, Younes; Bagheri, Robabeh; Sologubenko, Alla S.; Song, Zhenlun; Patzke, Greta R.; Najafpour, Mohammad Mahdi , Mechanistic Understanding of Water Oxidation in the Presence of a Copper Complex by In Situ Electrochemical Liquid Transmission Electron Microscopy, 2021, ACS Applied Materials & Interfaces, 10.1021/acsami.1c00243
    Assessment of Pressure and Density of Confined Water in Graphene Liquid Cellshttps://onlinelibrary.wiley.com/doi/abs/10.1002/admi.201901727Ghodsi, Seyed Mohammadreza; Sharifi?Asl, Seyyed Soroosh; Rehak, Pavel; Král, Petr; Megaridis, Constantine M.; Shahbazian?Yassar, Reza; Shokuhfar, Tolou , Assessment of Pressure and Density of Confined Water in Graphene Liquid Cells, 2020, Advanced Materials Interfaces, 10.1002/admi.201901727
    In situ formation of 1D nanostructures from ceria nanoparticle dispersions by liquid cell TEM irradiationhttps://doi.org/10.1007/s10853-019-04140-0Asghar, M. S. A.; Inkson, B. J.; Möbus, G. , In situ formation of 1D nanostructures from ceria nanoparticle dispersions by liquid cell TEM irradiation, 2020, Journal of Materials Science, 10.1007/s10853-019-04140-0
    Scalable and precise synthesis of two-dimensional metal organic framework nanosheets in a high shear annular microreactorhttp://www.sciencedirect.com/science/article/pii/S1385894720301248Jose, Nicholas A.; Zeng, Hua Chun; Lapkin, Alexei A. , Scalable and precise synthesis of two-dimensional metal organic framework nanosheets in a high shear annular microreactor, 2020, Chemical Engineering Journal, 10.1016/j.cej.2020.124133
    Current-Density-Dependent Electroplating in Ca Electrolytes: From Globules to Dendriteshttps://doi.org/10.1021/acsenergylett.0c01153Pu, Shengda D.; Gong, Chen; Gao, Xiangwen; Ning, Ziyang; Yang, Sixie; Marie, John-Joseph; Liu, Boyang; House, Robert A.; Hartley, Gareth O.; Luo, Jun; Bruce, Peter G.; Robertson, Alex W. , Current-Density-Dependent Electroplating in Ca Electrolytes: From Globules to Dendrites, 2020, ACS Energy Letters, 10.1021/acsenergylett.0c01153
    Imaging how thermal capillary waves and anisotropic interfacial stiffness shape nanoparticle supracrystalshttp://www.nature.com/articles/s41467-020-18363-2Ou, Zihao; Yao, Lehan; An, Hyosung; Shen, Bonan; Chen, Qian , Imaging how thermal capillary waves and anisotropic interfacial stiffness shape nanoparticle supracrystals, 2020, Nature Communications, 10.1038/s41467-020-18363-2
    Growth of Supported Gold Nanoparticles in Aqueous Phase Studied by in Situ Transmission Electron Microscopyhttps://doi.org/10.1021/acs.jpcc.9b10237Meijerink, Mark J.; de Jong, Krijn P.; Ze?evi?, Jovana , Growth of Supported Gold Nanoparticles in Aqueous Phase Studied by in Situ Transmission Electron Microscopy, 2020, The Journal of Physical Chemistry C, 10.1021/acs.jpcc.9b10237
    In Situ Monitoring of the Seeding and Growth of Silver Metal–Organic Nanotubes by Liquid-Cell Transmission Electron Microscopyhttps://doi.org/10.1021/acsnano.0c03209Gnanasekaran, Karthikeyan; Vailonis, Kristina M.; Jenkins, David M.; Gianneschi, Nathan C. , In Situ Monitoring of the Seeding and Growth of Silver Metal–Organic Nanotubes by Liquid-Cell Transmission Electron Microscopy, 2020, ACS Nano, 10.1021/acsnano.0c03209
    Observation of the interactions of silver nanoparticles (AgNPs) mediated by acid in the aquatic matrices using in-situ liquid cell transmission electron microscopyhttp://www.sciencedirect.com/science/article/pii/S0003267019315582Fernando, Ishara; Tay, Yee Yan; Karunasekera, Hasith; Zhou, Yan , Observation of the interactions of silver nanoparticles (AgNPs) mediated by acid in the aquatic matrices using in-situ liquid cell transmission electron microscopy, 2020, Analytica Chimica Acta, 10.1016/j.aca.2019.12.072
    Understanding solution processing of inorganic materials using cryo-EMhttps://www.osapublishing.org/ome/abstract.cfm?uri=ome-10-1-119Dutta, Nikita S.; Dutta, Nikita S.; Shao, Paul; Gong, Kai; Gong, Kai; White, Claire E.; White, Claire E.; Yao, Nan; Arnold, Craig B.; Arnold, Craig B. , Understanding solution processing of inorganic materials using cryo-EM, 2020, Optical Materials Express, 10.1364/OME.10.000119
    Unveiling the Dynamical Assembly of Magnetic Nanocrystal Zig-Zag Chains via In Situ TEM Imaging in Liquidhttps://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201907419Arciniegas, Milena P.; Castelli, Andrea; Brescia, Rosaria; Serantes, David; Ruta, Sergiu; Hovorka, Ondrej; Satoh, Akira; Chantrell, Roy; Pellegrino, Teresa , Unveiling the Dynamical Assembly of Magnetic Nanocrystal Zig-Zag Chains via In Situ TEM Imaging in Liquid, 2020, Small, 10.1002/smll.201907419
    Real-Time In Situ Observations Reveal a Double Role for Ascorbic Acid in the Anisotropic Growth of Silver on Goldhttps://doi.org/10.1021/acs.jpclett.0c00121Aliyah, Kinanti; Lyu, Jieli; Goldmann, Claire; Bizien, Thomas; Hamon, Cyrille; Alloyeau, Damien; Constantin, Doru , Real-Time In Situ Observations Reveal a Double Role for Ascorbic Acid in the Anisotropic Growth of Silver on Gold, 2020, The Journal of Physical Chemistry Letters, 10.1021/acs.jpclett.0c00121
    Electron microscopy of nanoparticle superlattice formation at a solid-liquid interface in nonpolar liquidshttps://advances.sciencemag.org/content/6/20/eaba1404Cepeda-Perez, E.; Doblas, D.; Kraus, T.; Jonge, N. de , Electron microscopy of nanoparticle superlattice formation at a solid-liquid interface in nonpolar liquids, 2020, Science Advances, 10.1126/sciadv.aba1404
    In situ monitoring of exopolymer-dependent Mn mineralization on bacterial surfaceshttps://advances.sciencemag.org/content/6/27/eaaz3125Couasnon, Thaïs; Alloyeau, Damien; Ménez, Bénédicte; Guyot, François; Ghigo, Jean-Marc; Gélabert, Alexandre , In situ monitoring of exopolymer-dependent Mn mineralization on bacterial surfaces, 2020, Science Advances, 10.1126/sciadv.aaz3125
    Revealing nanoscale mineralization pathways of hydroxyapatite using in situ liquid cell transmission electron microscopyhttps://advances.sciencemag.org/content/6/47/eaaz7524He, Kun; Sawczyk, Michal; Liu, Cong; Yuan, Yifei; Song, Boao; Deivanayagam, Ram; Nie, Anmin; Hu, Xiaobing; Dravid, Vinayak P.; Lu, Jun; Sukotjo, Cortino; Lu, Yu-peng; Král, Petr; Shokuhfar, Tolou; Shahbazian-Yassar, Reza , Revealing nanoscale mineralization pathways of hydroxyapatite using in situ liquid cell transmission electron microscopy, 2020, Science Advances, 10.1126/sciadv.aaz7524
    Degradation Mechanisms of Supported Pt Nanocatalysts in Proton Exchange Membrane Fuel Cells: An Operando Study through Liquid Cell Transmission Electron Microscopyhttps://doi.org/10.1021/acsaem.9b02000Impagnatiello, Andrea; Cerqueira, Carolina Ferreira; Coulon, Pierre-Eugène; Morin, Arnaud; Escribano, Sylvie; Guetaz, Laure; Clochard, Marie-Claude; Rizza, Giancarlo , Degradation Mechanisms of Supported Pt Nanocatalysts in Proton Exchange Membrane Fuel Cells: An Operando Study through Liquid Cell Transmission Electron Microscopy, 2020, ACS Applied Energy Materials, 10.1021/acsaem.9b02000
    Investigating local oxidation processes in Fe thin films in a water vapor environment by in situ liquid cell TEMhttp://www.sciencedirect.com/science/article/pii/S0304399119300750Key, Jordan W.; Zhu, Shixiang; Rouleau, Christopher M.; Unocic, Raymond R.; Xie, Yao; Kacher, Josh , Investigating local oxidation processes in Fe thin films in a water vapor environment by in situ liquid cell TEM, 2020, Ultramicroscopy, 10.1016/j.ultramic.2019.112842
    Selective shortening of gold nanorods: when surface functionalization dictates the reactivity of nanostructureshttps://pubs.rsc.org/en/content/articlelanding/2020/nr/d0nr06326fKhelfa, Abdelali; Meng, Jun; Byun, Caroline; Wang, Guillaume; Nelayah, Jaysen; Ricolleau, Christian; Amara, Hakim; Guesmi, Hazar; Alloyeau, Damien , Selective shortening of gold nanorods: when surface functionalization dictates the reactivity of nanostructures, 2020, Nanoscale, 10.1039/D0NR06326F
    Liquid-Flowing Graphene Chip-Based High-Resolution Electron Microscopyhttps://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202005468Koo, Kunmo; Park, Jungjae; Ji, Sanghyeon; Toleukhanova, Saltanat; Yuk, Jong Min , Liquid-Flowing Graphene Chip-Based High-Resolution Electron Microscopy, 2020, Advanced Materials, https://doi.org/10.1002/adma.202005468
    Time-Resolved Observation of Evolution of Amyloid-? Oligomer with Temporary Salt Crystalshttps://doi.org/10.1021/acs.jpclett.0c01487Nakajima, Kichitaro; Yamazaki, Tomoya; Kimura, Yuki; So, Masatomo; Goto, Yuji; Ogi, Hirotsugu , Time-Resolved Observation of Evolution of Amyloid-? Oligomer with Temporary Salt Crystals, 2020, The Journal of Physical Chemistry Letters, 10.1021/acs.jpclett.0c01487
    Kinetic pathways of crystallization at the nanoscalehttps://www.nature.com/articles/s41563-019-0514-1Ou, Zihao; Wang, Ziwei; Luo, Binbin; Luijten, Erik; Chen, Qian , Kinetic pathways of crystallization at the nanoscale, 2020, Nature Materials, 10.1038/s41563-019-0514-1
    Strain-Induced Corrosion Kinetics at Nanoscale Are Revealed in Liquid: Enabling Control of Corrosion Dynamics of Electrocatalysishttp://www.sciencedirect.com/science/article/pii/S2451929420302539Shi, Fenglei; Gao, Wenpei; Shan, Hao; Li, Fan; Xiong, Yalin; Peng, Jiaheng; Xiang, Qian; Chen, Wenlong; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao; Zhu, Hong; Zhang, Hui; Yang, Deren; Pan, Xiaoqing; Wu, Jianbo , Strain-Induced Corrosion Kinetics at Nanoscale Are Revealed in Liquid: Enabling Control of Corrosion Dynamics of Electrocatalysis, 2020, Chem, 10.1016/j.chempr.2020.06.004
    A Universal Nano-capillary Based Method of Catalyst Immobilization for Liquid-Cell Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201916419Tarnev, Tsvetan; Cychy, Steffen; Andronescu, Corina; Muhler, Martin; Schuhmann, Wolfgang; Chen, Yen-Ting , A Universal Nano-capillary Based Method of Catalyst Immobilization for Liquid-Cell Transmission Electron Microscopy, 2020, Angewandte Chemie International Edition, 10.1002/anie.201916419
    High mobility of lattice molecules and defects during the early stage of protein crystallizationhttps://pubs.rsc.org/en/content/articlelanding/2020/sm/c9sm02382hYamazaki, Tomoya; Driessche, Alexander E. S. Van; Kimura, Yuki , High mobility of lattice molecules and defects during the early stage of protein crystallization, 2020, Soft Matter, 10.1039/C9SM02382H
    Self-assembly of colloidal polymers from two-patch silica nanoparticleshttps://doi.org/10.1007/s12274-020-3024-1Li, Weiya; Liu, Bin; Hubert, Céline; Perro, Adeline; Duguet, Etienne; Ravaine, Serge , Self-assembly of colloidal polymers from two-patch silica nanoparticles, 2020, Nano Research, 10.1007/s12274-020-3024-1
    Molecular-Level Insight into Correlation between Surface Defects and Stability of Methylammonium Lead Halide Perovskite Under Controlled Humidityhttps://onlinelibrary.wiley.com/doi/abs/10.1002/smtd.202000834Kazemi, Mohammad Ali Akhavan; Raval, Parth; Cherednichekno, Kirill; Chotard, Jean-Noel; Krishna, Anurag; Demortiere, Arnaud; Reddy, G. N. Manjunatha; Sauvage, Frédéric , Molecular-Level Insight into Correlation between Surface Defects and Stability of Methylammonium Lead Halide Perovskite Under Controlled Humidity, 2020, Small Methods, https://doi.org/10.1002/smtd.202000834
    Probing Thermoresponsive Polymerization-Induced Self-Assembly with Variable-Temperature Liquid-Cell Transmission Electron Microscopyhttp://www.sciencedirect.com/science/article/pii/S2590238520306664Scheutz, Georg M.; Touve, Mollie A.; Carlini, Andrea S.; Garrison, John B.; Gnanasekaran, Karthikeyan; Sumerlin, Brent S.; Gianneschi, Nathan C. , Probing Thermoresponsive Polymerization-Induced Self-Assembly with Variable-Temperature Liquid-Cell Transmission Electron Microscopy, 2020, Matter, 10.1016/j.matt.2020.11.017
    New Insights into Water Treatment Materials with Chemically Sensitive Soft and Tender X-rayshttps://www.tandfonline.com/doi/full/10.1080/08940886.2020.1784695Su, Gregory M.; Cordova, Isvar A.; Wang, Cheng , New Insights into Water Treatment Materials with Chemically Sensitive Soft and Tender X-rays, 2020, Synchrotron Radiation News, 10.1080/08940886.2020.1784695
    In Situ Ni 2+ Stain for Liposome Imaging by Liquid-Cell Transmission Electron Microscopyhttps://pubs.acs.org/doi/10.1021/acs.nanolett.0c00898Gnanasekaran, Karthikeyan; Chang, HanByul; Smeets, Paul J. M.; Korpanty, Joanna; Geiger, Franz M.; Gianneschi, Nathan C. , In Situ Ni 2+ Stain for Liposome Imaging by Liquid-Cell Transmission Electron Microscopy, 2020, Nano Letters, 10.1021/acs.nanolett.0c00898
    Statistical learning of governing equations of dynamics from in-situ electron microscopy imaging datahttps://linkinghub.elsevier.com/retrieve/pii/S0264127520305074Li, Xin; Dyck, Ondrej; Unocic, Raymond R.; Ievlev, Anton V.; Jesse, Stephen; Kalinin, Sergei V. , Statistical learning of governing equations of dynamics from in-situ electron microscopy imaging data, 2020, Materials & Design, 10.1016/j.matdes.2020.108973
    Graphene-Sealed Flow Cells for In Situ Transmission Electron Microscopy of Liquid Sampleshttps://pubs.acs.org/doi/10.1021/acsnano.0c00431Dunn, Gabriel; Adiga, Vivekananda P.; Pham, Thang; Bryant, Christopher; Horton-Bailey, Donez J.; Belling, Jason N.; LaFrance, Ben; Jackson, Jonathan A.; Barzegar, Hamid Reza; Yuk, Jong Min; Aloni, Shaul; Crommie, Michael F.; Zettl, Alex , Graphene-Sealed Flow Cells for In Situ Transmission Electron Microscopy of Liquid Samples, 2020, ACS Nano, 10.1021/acsnano.0c00431
    Dissolution Behavior of Isolated and Aggregated Hematite Particles Revealed by in Situ Liquid Cell Transmission Electron Microscopyhttps://doi.org/10.1021/acs.est.8b05922Li, Xiaoxu; Qin, Fuyu; Chen, Xuanyu; Sheng, Anxu; Wang, Zhiwei; Liu, Juan , Dissolution Behavior of Isolated and Aggregated Hematite Particles Revealed by in Situ Liquid Cell Transmission Electron Microscopy, 2019, Environmental Science & Technology, 10.1021/acs.est.8b05922
    Direct Observation of Early Stages of Growth of Multilayered DNA-Templated Au-Pd-Au Core-Shell Nanoparticles in Liquid Phasehttps://www.frontiersin.org/articles/10.3389/fbioe.2019.00019/fullBhattarai, Nabraj; Prozorov, Tanya , Direct Observation of Early Stages of Growth of Multilayered DNA-Templated Au-Pd-Au Core-Shell Nanoparticles in Liquid Phase, 2019, Frontiers in Bioengineering and Biotechnology, 10.3389/fbioe.2019.00019
    Atomic-Level Observation of Electrochemical Platinum Dissolution and Redepositionhttps://doi.org/10.1021/acs.nanolett.9b02382Nagashima, Shinya; Ikai, Toshihiro; Sasaki, Yuki; Kawasaki, Tadahiro; Hatanaka, Tatsuya; Kato, Hisao; Kishita, Keisuke , Atomic-Level Observation of Electrochemical Platinum Dissolution and Redeposition, 2019, Nano Letters, 10.1021/acs.nanolett.9b02382
    Current Density Distribution in Electrochemical Cells with Small Cell Heights and Coplanar Thin Electrodes as Used in ec-S/TEM Cell Geometrieshttps://iopscience.iop.org/article/10.1149/2.0211904jes/metaStricker, Elizabeth A.; Ke, Xinyou; Wainright, Jesse S.; Unocic, Raymond R.; Savinell, Robert F. , Current Density Distribution in Electrochemical Cells with Small Cell Heights and Coplanar Thin Electrodes as Used in ec-S/TEM Cell Geometries, 2019, Journal of The Electrochemical Society, 10.1149/2.0211904jes
    Direct Observation of Redox Mediator-Assisted Solution-Phase Discharging of Li–O2 Battery by Liquid-Phase Transmission Electron Microscopyhttps://doi.org/10.1021/jacs.9b02332Lee, Donghoon; Park, Hyeokjun; Ko, Youngmin; Park, Hayoung; Hyeon, Taeghwan; Kang, Kisuk; Park, Jungwon , Direct Observation of Redox Mediator-Assisted Solution-Phase Discharging of Li–O2 Battery by Liquid-Phase Transmission Electron Microscopy, 2019, Journal of the American Chemical Society, 10.1021/jacs.9b02332
    Dynamics of gold nanoparticle clusters observed with liquid-phase electron microscopyhttp://www.sciencedirect.com/science/article/pii/S0968432818303457Cepeda-Pérez, Elisa; de Jonge, Niels , Dynamics of gold nanoparticle clusters observed with liquid-phase electron microscopy, 2019, Micron, 10.1016/j.micron.2018.11.006
    Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticleshttp://www.sciencedirect.com/science/article/pii/S0045653518319830Fernando, Ishara; Zhou, Yan , Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles, 2019, Chemosphere, 10.1016/j.chemosphere.2018.10.122
    Dynamic Optimization and Non-linear Model Predictive Control to Achieve Targeted Particle Morphologieshttps://onlinelibrary.wiley.com/doi/abs/10.1002/cite.201800118Gerlinger, Wolfgang; Asua, José Maria; Chaloupka, Tomáš; Faust, Johannes M. M.; Gjertsen, Fredrik; Hamzehlou, Shaghayegh; Hauger, Svein Olav; Jahns, Ekkehard; Joy, Preet J.; Kosek, Juraj; Lapkin, Alexei; Leiza, Jose Ramon; Mhamdi, Adel; Mitsos, Alexander; Naeem, Omar; Rajabalinia, Noushin; Singstad, Peter; Suberu, John , Dynamic Optimization and Non-linear Model Predictive Control to Achieve Targeted Particle Morphologies, 2019, Chemie Ingenieur Technik, 10.1002/cite.201800118
    Structural analysis of single nanoparticles in liquid by low-dose STEM nanodiffractionhttp://www.sciencedirect.com/science/article/pii/S0968432818302920Khelfa, Abdelali; Byun, Caroline; Nelayah, Jaysen; Wang, Guillaume; Ricolleau, Christian; Alloyeau, Damien , Structural analysis of single nanoparticles in liquid by low-dose STEM nanodiffraction, 2019, Micron, 10.1016/j.micron.2018.09.008
    In Situ Analysis of Growth Behaviors of Cu2O Nanocubes in Liquid Cell Transmission Electron Microscopyhttps://doi.org/10.1021/acs.analchem.9b01192Lin, Ya-Hsuan; Chen, Jui-Yuan; Chen, Fu-Chun; Kuo, Ming-Yu; Hsu, Yung-Jung; Wu, Wen-Wei , In Situ Analysis of Growth Behaviors of Cu2O Nanocubes in Liquid Cell Transmission Electron Microscopy, 2019, Analytical Chemistry, 10.1021/acs.analchem.9b01192
    Nanoscale Imaging and Stabilization of Silica Nanospheres in Liquid Phase Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/abs/10.1002/ppsc.201800374Meijerink, Mark J.; Spiga, Cristiano; Hansen, Thomas W.; Damsgaard, Christian D.; Jong, Krijn P. de; Ze?evi?, Jovana , Nanoscale Imaging and Stabilization of Silica Nanospheres in Liquid Phase Transmission Electron Microscopy, 2019, Particle & Particle Systems Characterization, 10.1002/ppsc.201800374
    On Biomineralization: Enzymes Switch on Mesocrystal Assemblyhttps://doi.org/10.1021/acscentsci.8b00853Rao, Ashit; Roncal-Herrero, Teresa; Schmid, Elina; Drechsler, Markus; Scheffner, Martin; Gebauer, Denis; Kröger, Roland; Cölfen, Helmut , On Biomineralization: Enzymes Switch on Mesocrystal Assembly, 2019, ACS Central Science, 10.1021/acscentsci.8b00853
    Synthesis of complex rare earth nanostructures using in situ liquid cell transmission electron microscopyhttps://pubs.rsc.org/en/content/articlelanding/2019/na/c9na00197bTaylor, Caitlin A.; Nenoff, Tina M.; Pratt, Sarah H.; Hattar, Khalid , Synthesis of complex rare earth nanostructures using in situ liquid cell transmission electron microscopy, 2019, Nanoscale Advances, 10.1039/C9NA00197B
    Template-Assisted in Situ Synthesis of Ag@Au Bimetallic Nanostructures Employing Liquid-Phase Transmission Electron Microscopyhttps://doi.org/10.1021/acsnano.9b06614Ahmad, Nabeel; Bon, Marta; Passerone, Daniele; Erni, Rolf , Template-Assisted in Situ Synthesis of Ag@Au Bimetallic Nanostructures Employing Liquid-Phase Transmission Electron Microscopy, 2019, ACS Nano, 10.1021/acsnano.9b06614
    Controlling the radical-induced redox chemistry inside a liquid-cell TEMhttps://pubs.rsc.org/en/content/articlelanding/2019/sc/c9sc02227aAmbroži?, Bojan; Prašnikar, Anže; Hodnik, Nejc; Kostevšek, Nina; Likozar, Blaž; Rožman, Kristina Žužek; Šturm, Sašo , Controlling the radical-induced redox chemistry inside a liquid-cell TEM, 2019, Chemical Science, 10.1039/C9SC02227A
    Real-time imaging of activation and degradation of carbon supported octahedral Pt–Ni alloy fuel cell catalysts at the nanoscale using in situ electrochemical liquid cell STEMhttps://pubs.rsc.org/en/content/articlelanding/2019/ee/c9ee01185dBeermann, Vera; Holtz, Megan E.; Padgett, Elliot; Araujo, Jorge Ferreira de; Muller, David A.; Strasser, Peter , Real-time imaging of activation and degradation of carbon supported octahedral Pt–Ni alloy fuel cell catalysts at the nanoscale using in situ electrochemical liquid cell STEM, 2019, Energy & Environmental Science, 10.1039/C9EE01185D
    In situ TEM observation of Au–Cu2O core–shell growth in liquidshttps://pubs.rsc.org/en/content/articlelanding/2019/nr/c9nr00972hChen, Fu-Chun; Chen, Jui-Yuan; Lin, Ya-Hsuan; Kuo, Ming-Yu; Hsu, Yung-Jung; Wu, Wen-Wei , In situ TEM observation of Au–Cu2O core–shell growth in liquids, 2019, Nanoscale, 10.1039/C9NR00972H
    Attachment of iron oxide nanoparticles to carbon nanofibers studied by in-situ liquid phase transmission electron microscopyhttp://www.sciencedirect.com/science/article/pii/S0968432818302981Krans, Nynke A.; Ahmad, N.; Alloyeau, D.; de Jong, K. P.; Ze?evi?, J. , Attachment of iron oxide nanoparticles to carbon nanofibers studied by in-situ liquid phase transmission electron microscopy, 2019, Micron, 10.1016/j.micron.2018.10.009
    Time-Resolved Observations of Liquid–Liquid Phase Separation at the Nanoscale Using in Situ Liquid Transmission Electron Microscopyhttps://doi.org/10.1021/jacs.9b03083Le Ferrand, Hortense; Duchamp, Martial; Gabryelczyk, Bartosz; Cai, Hao; Miserez, Ali , Time-Resolved Observations of Liquid–Liquid Phase Separation at the Nanoscale Using in Situ Liquid Transmission Electron Microscopy, 2019, Journal of the American Chemical Society, 10.1021/jacs.9b03083
    Assessment of oxide nanoparticle stability in liquid phase transmission electron microscopyhttps://doi.org/10.1007/s12274-019-2419-3Meijerink, Mark J.; de Jong, Krijn P.; Ze?evi?, Jovana , Assessment of oxide nanoparticle stability in liquid phase transmission electron microscopy, 2019, Nano Research, 10.1007/s12274-019-2419-3
    Morphological and Structural Evolution of Co3O4 Nanoparticles Revealed by in Situ Electrochemical Transmission Electron Microscopy during Electrocatalytic Water Oxidationhttps://doi.org/10.1021/acsnano.9b04745Ortiz Peña, Nathaly; Ihiawakrim, Dris; Han, Madeleine; Lassalle-Kaiser, Benedikt; Carenco, Sophie; Sanchez, Clément; Laberty-Robert, Christel; Portehault, David; Ersen, Ovidiu , Morphological and Structural Evolution of Co3O4 Nanoparticles Revealed by in Situ Electrochemical Transmission Electron Microscopy during Electrocatalytic Water Oxidation, 2019, ACS Nano, 10.1021/acsnano.9b04745
    In Situ Observations of Shell Growth and Oxidative Etching Behaviors of Pd Nanoparticles in Solutions by Liquid Cell Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201900050Su, Ting; Wang, Zhong Lin; Wang, Zhiwei , In Situ Observations of Shell Growth and Oxidative Etching Behaviors of Pd Nanoparticles in Solutions by Liquid Cell Transmission Electron Microscopy, 2019, Small, 10.1002/smll.201900050
    Redox-Sensitive Facet Dependency in Etching of Ceria Nanocrystals Directly Observed by Liquid Cell TEMhttps://doi.org/10.1021/jacs.9b09508Sung, Jongbaek; Choi, Back Kyu; Kim, Byunghoon; Kim, Byung Hyo; Kim, Joodeok; Lee, Donghoon; Kim, Sungin; Kang, Kisuk; Hyeon, Taeghwan; Park, Jungwon , Redox-Sensitive Facet Dependency in Etching of Ceria Nanocrystals Directly Observed by Liquid Cell TEM, 2019, Journal of the American Chemical Society, 10.1021/jacs.9b09508
    Elucidating the Growth of Metal–Organic Nanotubes Combining Isoreticular Synthesis with Liquid-Cell Transmission Electron Microscopyhttps://doi.org/10.1021/jacs.9b04586Vailonis, Kristina M.; Gnanasekaran, Karthikeyan; Powers, Xian B.; Gianneschi, Nathan C.; Jenkins, David M. , Elucidating the Growth of Metal–Organic Nanotubes Combining Isoreticular Synthesis with Liquid-Cell Transmission Electron Microscopy, 2019, Journal of the American Chemical Society, 10.1021/jacs.9b04586
    Liquid Cell Transmission Electron Microscopy Sheds Light on The Mechanism of Palladium Electrodepositionhttps://doi.org/10.1021/acs.langmuir.8b02846Yang, Jie; Andrei, Carmen M.; Chan, Yuting; Mehdi, B. Layla; Browning, Nigel D.; Botton, Gianluigi A.; Soleymani, Leyla , Liquid Cell Transmission Electron Microscopy Sheds Light on The Mechanism of Palladium Electrodeposition, 2019, Langmuir, 10.1021/acs.langmuir.8b02846
    In Situ Observation of Dynamic Galvanic Replacement Reactions in Twinned Metallic Nanowires by Liquid Cell Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201910379Zhuang, Chunqiang; Qi, Heyang; Cheng, Xing; Chen, Ge; Gao, Chunlang; Wang, Lihua; Sun, Shaorui; Zou, Jin; Han, Xiaodong , In Situ Observation of Dynamic Galvanic Replacement Reactions in Twinned Metallic Nanowires by Liquid Cell Transmission Electron Microscopy, 2019, Angewandte Chemie International Edition, 10.1002/anie.201910379
    Controlling dissolution of PbTe nanoparticles in organic solvents during liquid cell transmission electron microscopyhttps://pubs.rsc.org/en/content/articlelanding/2019/nr/c9nr04646aBhattarai, Nabraj; Woodall, Danielle L.; Boercker, Janice E.; Tischler, Joseph G.; Brintlinger, Todd H. , Controlling dissolution of PbTe nanoparticles in organic solvents during liquid cell transmission electron microscopy, 2019, Nanoscale, 10.1039/C9NR04646A
    Conjugated Block Copolymers as Model Systems to Examine Mechanisms of Charge Generation in Donor–Acceptor Materialshttps://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201804858Aplan, Melissa P.; Grieco, Christopher; Lee, Youngmin; Munro, Jason M.; Lee, Wonho; Gray, Jennifer L.; Seibers, Zach D.; Kuei, Brooke; Litofsky, Joshua H.; Kilbey, S. Michael; Wang, Qing; Dabo, Ismaila; Asbury, John B.; Gomez, Enrique D. , Conjugated Block Copolymers as Model Systems to Examine Mechanisms of Charge Generation in Donor–Acceptor Materials, 2019, Advanced Functional Materials, https://doi.org/10.1002/adfm.201804858
    Chemical and Morphological Origins of Improved Ion Conductivity in Perfluoro Ionene Chain Extended Ionomershttps://pubs.acs.org/doi/10.1021/jacs.9b05322Su, Gregory M.; Cordova, Isvar A.; Yandrasits, Michael A.; Lindell, Matthew; Feng, Jun; Wang, Cheng; Kusoglu, Ahmet , Chemical and Morphological Origins of Improved Ion Conductivity in Perfluoro Ionene Chain Extended Ionomers, 2019, Journal of the American Chemical Society, 10.1021/jacs.9b05322
    Influence of Cetyltrimethylammonium Bromide on Gold Nanocrystal Formation Studied by In Situ Liquid Cell Scanning Transmission Electron Microscopyhttps://doi.org/10.1021/acs.jpcc.7b06383Canepa, Silvia A.; Sneed, Brian T.; Sun, Hongyu; Unocic, Raymond R.; Mølhave, Kristian , Influence of Cetyltrimethylammonium Bromide on Gold Nanocrystal Formation Studied by In Situ Liquid Cell Scanning Transmission Electron Microscopy, 2018, The Journal of Physical Chemistry C, 10.1021/acs.jpcc.7b06383
    Comparing ex vivo and in vitro translocation of silver nanoparticles and ions through human nasal epitheliumhttp://www.sciencedirect.com/science/article/pii/S014296121830259XFalconer, Jonathan L.; Alt, Jeremiah A.; Grainger, David W. , Comparing ex vivo and in vitro translocation of silver nanoparticles and ions through human nasal epithelium, 2018, Biomaterials, 10.1016/j.biomaterials.2018.04.013
    Direct in Situ Observation and Analysis of the Formation of Palladium Nanocrystals with High-Index Facetshttps://doi.org/10.1021/acs.nanolett.8b02953Gao, Wenpei; Hou, Yusheng; Hood, Zachary D.; Wang, Xue; More, Karren; Wu, Ruqian; Xia, Younan; Pan, Xiaoqing; Chi, Miaofang , Direct in Situ Observation and Analysis of the Formation of Palladium Nanocrystals with High-Index Facets, 2018, Nano Letters, 10.1021/acs.nanolett.8b02953
    Operando liquid cell electron microscopy of discharge and charge kinetics in lithium-oxygen batterieshttps://www.osti.gov/pages/biblio/1461336-operando-liquid-cell-electron-microscopy-discharge-charge-kinetics-lithium-oxygen-batteriesHe, Kun; Bi, Xuanxuan; Yuan, Yifei; Foroozan, Tara; Song, Boao; Amine, Khalil (ORCID:0000000192063719); Lu, Jun (ORCID:0000000308588577); Shahbazian-Yassar, Reza , Operando liquid cell electron microscopy of discharge and charge kinetics in lithium-oxygen batteries, 2018, Nano Energy, 10.1016/j.nanoen.2018.04.046
    In Situ Transmission Electron Microscopy Explores a New Nanoscale Pathway for Direct Gypsum Formation in Aqueous Solutionhttps://doi.org/10.1021/acsanm.8b00739He, Kun; Nie, Anmin; Yuan, Yifei; Ghodsi, Seyed Mohammadreza; Song, Boao; Firlar, Emre; Lu, Jun; Lu, Yu-peng; Shokuhfar, Tolou; Megaridis, Constantine M.; Shahbazian-Yassar, Reza , In Situ Transmission Electron Microscopy Explores a New Nanoscale Pathway for Direct Gypsum Formation in Aqueous Solution, 2018, ACS Applied Nano Materials, 10.1021/acsanm.8b00739
    In Situ Electron Diffraction Tomography Using a Liquid-Electrochemical Transmission Electron Microscopy Cell for Crystal Structure Determination of Cathode Materials for Li-Ion batterieshttps://doi.org/10.1021/acs.nanolett.8b02436Karakulina, Olesia M.; Demortière, Arnaud; Dachraoui, Walid; Abakumov, Artem M.; Hadermann, Joke , In Situ Electron Diffraction Tomography Using a Liquid-Electrochemical Transmission Electron Microscopy Cell for Crystal Structure Determination of Cathode Materials for Li-Ion batteries, 2018, Nano Letters, 10.1021/acs.nanolett.8b02436
    Liquid Cell Transmission Electron Microscopy and the Impact of Confinement on the Precipitation from Supersaturated Solutionshttps://www.mdpi.com/2075-163X/8/1/21Kröger, Roland; Verch, Andreas , Liquid Cell Transmission Electron Microscopy and the Impact of Confinement on the Precipitation from Supersaturated Solutions, 2018, Minerals, 10.3390/min8010021
    Operando Monitoring of the Solution-Mediated Discharge and Charge Processes in a Na–O2 Battery Using Liquid-Electrochemical Transmission Electron Microscopyhttps://doi.org/10.1021/acs.nanolett.7b04937Lutz, Lukas; Dachraoui, Walid; Demortière, Arnaud; Johnson, Lee R.; Bruce, Peter G.; Grimaud, Alexis; Tarascon, Jean-Marie , Operando Monitoring of the Solution-Mediated Discharge and Charge Processes in a Na–O2 Battery Using Liquid-Electrochemical Transmission Electron Microscopy, 2018, Nano Letters, 10.1021/acs.nanolett.7b04937
    Nanoscale kinetics of asymmetrical corrosion in core-shell nanoparticleshttps://www.nature.com/articles/s41467-018-03372-zShan, Hao; Gao, Wenpei; Xiong, Yalin; Shi, Fenglei; Yan, Yucong; Ma, Yanling; Shang, Wen; Tao, Peng; Song, Chengyi; Deng, Tao; Zhang, Hui; Yang, Deren; Pan, Xiaoqing; Wu, Jianbo , Nanoscale kinetics of asymmetrical corrosion in core-shell nanoparticles, 2018, Nature Communications, 10.1038/s41467-018-03372-z
    Quantifying the Nucleation and Growth Kinetics of Electron Beam Nanochemistry with Liquid Cell Scanning Transmission Electron Microscopyhttps://doi.org/10.1021/acs.chemmater.8b03050Wang, Mei; Park, Chiwoo; Woehl, Taylor J. , Quantifying the Nucleation and Growth Kinetics of Electron Beam Nanochemistry with Liquid Cell Scanning Transmission Electron Microscopy, 2018, Chemistry of Materials, 10.1021/acs.chemmater.8b03050
    Biomineralization of calcium phosphate revealed by in situ liquid-phase electron microscopyhttps://www.nature.com/articles/s42004-018-0081-4Wang, Xiaoyue; Yang, Jie; Andrei, Carmen M.; Soleymani, Leyla; Grandfield, Kathryn , Biomineralization of calcium phosphate revealed by in situ liquid-phase electron microscopy, 2018, Communications Chemistry, 10.1038/s42004-018-0081-4
    In situ study of nucleation and growth dynamics of Au nanoparticles on MoS2 nanoflakeshttps://pubs.rsc.org/en/content/articlelanding/2018/nr/c8nr03519aSong, Boao; He, Kun; Yuan, Yifei; Sharifi-Asl, Soroosh; Cheng, Meng; Lu, Jun; Saidi, Wissam A.; Shahbazian-Yassar, Reza , In situ study of nucleation and growth dynamics of Au nanoparticles on MoS2 nanoflakes, 2018, Nanoscale, 10.1039/C8NR03519A
    Monitoring the dynamics of cell-derived extracellular vesicles at the nanoscale by liquid-cell transmission electron microscopyhttps://pubs.rsc.org/en/content/articlelanding/2018/nr/c7nr07576fPiffoux, Max; Ahmad, Nabeel; Nelayah, Jaysen; Wilhelm, Claire; Silva, Amanda; Gazeau, Florence; Alloyeau, Damien , Monitoring the dynamics of cell-derived extracellular vesicles at the nanoscale by liquid-cell transmission electron microscopy, 2018, Nanoscale, 10.1039/C7NR07576F
    Hydrodynamic assembly of two-dimensional layered double hydroxide nanostructureshttps://www.nature.com/articles/s41467-018-07395-4Jose, Nicholas A.; Zeng, Hua Chun; Lapkin, Alexei A. , Hydrodynamic assembly of two-dimensional layered double hydroxide nanostructures, 2018, Nature Communications, 10.1038/s41467-018-07395-4
    Influence of Structural Defects on Biomineralized ZnS Nanoparticle Dissolution: An in-Situ Electron Microscopy Studyhttps://doi.org/10.1021/acs.est.7b04343Eskelsen, Jeremy R.; Xu, Jie; Chiu, Michelle; Moon, Ji-Won; Wilkins, Branford; Graham, David E.; Gu, Baohua; Pierce, Eric M. , Influence of Structural Defects on Biomineralized ZnS Nanoparticle Dissolution: An in-Situ Electron Microscopy Study, 2018, Environmental Science & Technology, 10.1021/acs.est.7b04343
    In situ liquid cell crystallization and imaging of thiamethoxam by helium ion microscopyhttps://avs.scitation.org/doi/10.1116/1.5040849Belianinov, Alex; Pawlicki, Alison; Burch, Matt; Kim, Songkil; Ievlev, Anton; Fowler, Jeff; Ovchinnikova, Olga , In situ liquid cell crystallization and imaging of thiamethoxam by helium ion microscopy, 2018, Journal of Vacuum Science & Technology B, 10.1116/1.5040849
    In-situ observation of radiation physics and chemistry of nanostructured cerium oxide in waterhttps://doi.org/10.1088/2053-1591/aae634Asghar, Muhammad Sajid Ali; Inkson, Beverley; Seal, Sudipta; Molinari, Marco; Sayle, Dean; Möbus, Günter , In-situ observation of radiation physics and chemistry of nanostructured cerium oxide in water, 2018, Materials Research Express, 10.1088/2053-1591/aae634
    Driving reversible redox reactions at solid-liquid interfaces with the electron beam of a transmission electron microscope: REVERSIBLE REDOX REACTIONS AT SOLID-LIQUID INTERFACEShttp://doi.wiley.com/10.1111/jmi.12568Ahmad, Nabeel; Wang, Guillaume; Nelayah, Jaysen; Ricolleau, Christian; Alloyeau, Damien , Driving reversible redox reactions at solid-liquid interfaces with the electron beam of a transmission electron microscope: REVERSIBLE REDOX REACTIONS AT SOLID-LIQUID INTERFACES, 2018, Journal of Microscopy, 10.1111/jmi.12568
    “On demand” triggered crystallization of CaCO3 from solute precursor species stabilized by the water-in-oil microemulsionhttps://pubs.rsc.org/en/content/articlelanding/2018/cp/c8cp00540kStawski, Tomasz M.; Roncal-Herrero, Teresa; Fernandez-Martinez, Alejandro; Matamoros-Veloza, Adriana; Kröger, Roland; Benning, Liane G. , “On demand” triggered crystallization of CaCO3 from solute precursor species stabilized by the water-in-oil microemulsion, 2018, Physical Chemistry Chemical Physics, 10.1039/C8CP00540K
    Observation of Solution Samples by Transmission Electron Microscopehttps://www.hitachi-hightech.com/file/global/pdf/sinews/si_report/110202.pdfKimura, Yuki , Observation of Solution Samples by Transmission Electron Microscope, 2018, Scientific Instrument News, -
    In Situ TEM Observations of Corrosion in Nanocrystalline Fe Thin Filmshttps://onlinelibrary.wiley.com/doi/10.1002/9781119423829.ch29Gross, David; Kacher, Josh; Key, Jordan; Hattar, Khalid; Robertson, Ian M. , In Situ TEM Observations of Corrosion in Nanocrystalline Fe Thin Films, 2018, Ceramic Transactions Series, 10.1002/9781119423829.ch29
    Thermoresponsive Gel Embedded with Adipose Stem-Cell-Derived Extracellular Vesicles Promotes Esophageal Fistula Healing in a Thermo-Actuated Delivery Strategyhttps://pubs.acs.org/doi/10.1021/acsnano.8b00117Silva, Amanda K. A.; Perretta, Silvana; Perrod, Guillaume; Pidial, Laetitia; Lindner, Véronique; Carn, Florent; Lemieux, Shony; Alloyeau, Damien; Boucenna, Imane; Menasché, Philippe; Dallemagne, Bernard; Gazeau, Florence; Wilhelm, Claire; Cellier, Christophe; Clément, Olivier; Rahmi, Gabriel , Thermoresponsive Gel Embedded with Adipose Stem-Cell-Derived Extracellular Vesicles Promotes Esophageal Fistula Healing in a Thermo-Actuated Delivery Strategy, 2018, ACS Nano, 10.1021/acsnano.8b00117
    In Liquid Observation and Quantification of Nucleation and Growth of Gold Nanostructures Using in Situ Transmission Electron Microscopyhttps://doi.org/10.1021/acs.jpcc.6b10400Yang, Jie; Andrei, Carmen M.; Botton, Gianluigi A.; Soleymani, Leyla , In Liquid Observation and Quantification of Nucleation and Growth of Gold Nanostructures Using in Situ Transmission Electron Microscopy, 2017, The Journal of Physical Chemistry C, 10.1021/acs.jpcc.6b10400
    Applying shot boundary detection for automated crystal growth analysis during in situ transmission electron microscope experimentshttps://doi.org/10.1186/s40679-016-0034-xMoeglein, W. A.; Griswold, R.; Mehdi, B. L.; Browning, N. D.; Teuton, J. , Applying shot boundary detection for automated crystal growth analysis during in situ transmission electron microscope experiments, 2017, Advanced Structural and Chemical Imaging, 10.1186/s40679-016-0034-x
    Exploring the Formation of Symmetric Gold Nanostars by Liquid-Cell Transmission Electron Microscopyhttps://doi.org/10.1021/acs.nanolett.7b01013Ahmad, Nabeel; Wang, Guillaume; Nelayah, Jaysen; Ricolleau, Christian; Alloyeau, Damien , Exploring the Formation of Symmetric Gold Nanostars by Liquid-Cell Transmission Electron Microscopy, 2017, Nano Letters, 10.1021/acs.nanolett.7b01013
    Colloidal Covalent Organic Frameworkshttps://doi.org/10.1021/acscentsci.6b00331Smith, Brian J.; Parent, Lucas R.; Overholts, Anna C.; Beaucage, Peter A.; Bisbey, Ryan P.; Chavez, Anton D.; Hwang, Nicky; Park, Chiwoo; Evans, Austin M.; Gianneschi, Nathan C.; Dichtel, William R. , Colloidal Covalent Organic Frameworks, 2017, ACS Central Science, 10.1021/acscentsci.6b00331
    Two types of amorphous protein particles facilitate crystal nucleationhttps://www.pnas.org/content/114/9/2154Yamazaki, Tomoya; Kimura, Yuki; Vekilov, Peter G.; Furukawa, Erika; Shirai, Manabu; Matsumoto, Hiroaki; Driessche, Alexander E. S. Van; Tsukamoto, Katsuo , Two types of amorphous protein particles facilitate crystal nucleation, 2017, Proceedings of the National Academy of Sciences, 10.1073/pnas.1606948114
    Formation of Au Nanoparticles in Liquid Cell Transmission Electron Microscopy: From a Systematic Study to Engineered Nanostructureshttps://doi.org/10.1021/acs.chemmater.7b04421Zhang, Yucheng; Keller, Debora; Rossell, Marta D.; Erni, Rolf , Formation of Au Nanoparticles in Liquid Cell Transmission Electron Microscopy: From a Systematic Study to Engineered Nanostructures, 2017, Chemistry of Materials, 10.1021/acs.chemmater.7b04421
    Anisotropic Shape Changes of Silica Nanoparticles Induced in Liquid with Scanning Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201602466Ze?evi?, Jovana; Hermannsdörfer, Justus; Schuh, Tobias; Jong, Krijn P. de; Jonge, Niels de , Anisotropic Shape Changes of Silica Nanoparticles Induced in Liquid with Scanning Transmission Electron Microscopy, 2017, Small, https://doi.org/10.1002/smll.201602466
    Bio-camouflage of anatase nanoparticles explored by in situ high-resolution electron microscopyhttps://pubs.rsc.org/en/content/articlelanding/2017/nr/c7nr02239eRibeiro, Ana R.; Mukherjee, Arijita; Hu, Xuan; Shafien, Shayan; Ghodsi, Reza; He, Kun; Gemini-Piperni, Sara; Wang, Canhui; Klie, Robert F.; Shokuhfar, Tolou; Shahbazian-Yassar, Reza; Borojevic, Radovan; Rocha, Luis A.; Granjeiro, José M. , Bio-camouflage of anatase nanoparticles explored by in situ high-resolution electron microscopy, 2017, Nanoscale, 10.1039/C7NR02239E
    Exploring dynamic surface processes during silicate mineral (wollastonite) dissolution with liquid cell TEMhttps://onlinelibrary.wiley.com/doi/abs/10.1111/jmi.12509Leonard, D. N.; Hellmann, R. , Exploring dynamic surface processes during silicate mineral (wollastonite) dissolution with liquid cell TEM, 2017, Journal of Microscopy, https://doi.org/10.1111/jmi.12509
    Evolution analysis of V2O5·nH2O gels for preparation of xerogels having a high specific surface area and their replicashttps://pubs.rsc.org/en/content/articlelanding/2017/ra/c7ra06850fIshii, Kanji; Kimura, Yuki; Yamazaki, Tomoya; Oaki, Yuya; Imai, Hiroaki , Evolution analysis of V2O5·nH2O gels for preparation of xerogels having a high specific surface area and their replicas, 2017, RSC Advances, 10.1039/C7RA06850F
    Building with ions: towards direct write of platinum nanostructures using in situ liquid cell helium ion microscopyhttps://pubs.rsc.org/en/content/articlelanding/2017/nr/c7nr04417hIevlev, Anton V.; Jakowski, Jacek; Burch, Matthew J.; Iberi, Vighter; Hysmith, Holland; Joy, David C.; Sumpter, Bobby G.; Belianinov, Alex; Unocic, Raymond R.; Ovchinnikova, Olga S. , Building with ions: towards direct write of platinum nanostructures using in situ liquid cell helium ion microscopy, 2017, Nanoscale, 10.1039/C7NR04417H
    The Use of Graphene and Its Derivatives for Liquid-Phase Transmission Electron Microscopy of Radiation-Sensitive Specimenshttps://doi.org/10.1021/acs.nanolett.6b04383Cho, Hoduk; Jones, Matthew R.; Nguyen, Son C.; Hauwiller, Matthew R.; Zettl, Alex; Alivisatos, A. Paul , The Use of Graphene and Its Derivatives for Liquid-Phase Transmission Electron Microscopy of Radiation-Sensitive Specimens, 2017, Nano Letters, 10.1021/acs.nanolett.6b04383
    In Situ Observation of Au Nanostructure Evolution in Liquid Cell TEMhttps://doi.org/10.1021/acs.jpcc.7b07956Chen, Ying-Chen; Chen, Jui-Yuan; Wu, Wen-Wei , In Situ Observation of Au Nanostructure Evolution in Liquid Cell TEM, 2017, The Journal of Physical Chemistry C, 10.1021/acs.jpcc.7b07956
    Giant Radiolytic Dissolution Rates of Aqueous Ceria Observed in Situ by Liquid-Cell TEMhttps://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cphc.201601398Asghar, Muhammad Sajid Ali; Inkson, Beverley J.; Möbus, Günter , Giant Radiolytic Dissolution Rates of Aqueous Ceria Observed in Situ by Liquid-Cell TEM, 2017, ChemPhysChem, https://doi.org/10.1002/cphc.201601398
    Practical Aspects of Electrochemical Corrosion Measurements During In Situ Analytical Transmission Electron Microscopy (TEM) of Austenitic Stainless Steel in Aqueous Mediahttps://www.cambridge.org/core/product/identifier/S1431927617012314/type/journal_articleSchilling, Sibylle; Janssen, Arne; Zaluzec, Nestor J.; Burke, M. Grace , Practical Aspects of Electrochemical Corrosion Measurements During In Situ Analytical Transmission Electron Microscopy (TEM) of Austenitic Stainless Steel in Aqueous Media, 2017, Microscopy and Microanalysis, 10.1017/S1431927617012314
    Ceria-Water-Reactions Studied by Liquid Cell TEMhttps://iopscience.iop.org/article/10.1088/1742-6596/902/1/012004Asghar, Muhammad Sajid Ali; Inkson, Beverley; Möbus, Günter , Ceria-Water-Reactions Studied by Liquid Cell TEM, 2017, Journal of Physics: Conference Series, 10.1088/1742-6596/902/1/012004
    Gene Expression in Electron-Beam-Irradiated Bacteria in Reply to “Live Cell Electron Microscopy Is Probably Impossible”https://pubs.acs.org/doi/10.1021/acsnano.6b06616Kennedy, Eamonn; Nelson, Edward M.; Damiano, John; Timp, Gregory , Gene Expression in Electron-Beam-Irradiated Bacteria in Reply to “Live Cell Electron Microscopy Is Probably Impossible”, 2017, ACS Nano, 10.1021/acsnano.6b06616
    Fractal growth of platinum electrodeposits revealed by in situ electron microscopyhttps://pubs.rsc.org/en/content/articlelanding/2016/nr/c6nr05167gWang, Lifen; Wen, Jianguo; Sheng, Huaping; Miller, Dean J. , Fractal growth of platinum electrodeposits revealed by in situ electron microscopy, 2016, Nanoscale, 10.1039/C6NR05167G
    In-Situ Liquid TEM Study on the Degradation Mechanism of Fuel Cell Catalystshttps://www.sae.org/publications/technical-papers/content/2016-01-1192/Kato, Hisao , In-Situ Liquid TEM Study on the Degradation Mechanism of Fuel Cell Catalysts, 2016, SAE International Journal of Alternative Powertrains, 10.4271/2016-01-1192
    Importance and Challenges of Electrochemical in Situ Liquid Cell Electron Microscopy for Energy Conversion Researchhttps://doi.org/10.1021/acs.accounts.6b00330Hodnik, Nejc; Dehm, Gerhard; Mayrhofer, Karl J. J. , Importance and Challenges of Electrochemical in Situ Liquid Cell Electron Microscopy for Energy Conversion Research, 2016, Accounts of Chemical Research, 10.1021/acs.accounts.6b00330
    1D oriented attachment of calcite nanocrystals: formation of single-crystalline rods through collisionhttps://pubs.rsc.org/en/content/articlelanding/2016/ra/c6ra09452jTakasaki, Mihiro; Kimura, Yuki; Yamazaki, Tomoya; Oaki, Yuya; Imai, Hiroaki , 1D oriented attachment of calcite nanocrystals: formation of single-crystalline rods through collision, 2016, RSC Advances, 10.1039/C6RA09452J
    Growth of dendritic nanostructures by liquid-cell transmission electron microscopy: a reflection of the electron-irradiation historyhttps://doi.org/10.1186/s40679-016-0023-0Ahmad, Nabeel; Le Bouar, Yann; Ricolleau, Christian; Alloyeau, Damien , Growth of dendritic nanostructures by liquid-cell transmission electron microscopy: a reflection of the electron-irradiation history, 2016, Advanced Structural and Chemical Imaging, 10.1186/s40679-016-0023-0
    Live Bacterial Physiology Visualized with 5 nm Resolution Using Scanning Transmission Electron Microscopyhttps://doi.org/10.1021/acsnano.5b07697Kennedy, Eamonn; Nelson, Edward M.; Tanaka, Tetsuya; Damiano, John; Timp, Gregory , Live Bacterial Physiology Visualized with 5 nm Resolution Using Scanning Transmission Electron Microscopy, 2016, ACS Nano, 10.1021/acsnano.5b07697
    In Situ Electron Microscopy Imaging and Quantitative Structural Modulation of Nanoparticle Superlatticeshttps://doi.org/10.1021/acsnano.6b05270Kim, Juyeong; Jones, Matthew R.; Ou, Zihao; Chen, Qian , In Situ Electron Microscopy Imaging and Quantitative Structural Modulation of Nanoparticle Superlattices, 2016, ACS Nano, 10.1021/acsnano.6b05270
    Imaging the Hydrated Microbe-Metal Interface Using Nanoscale Spectrum Imaginghttps://onlinelibrary.wiley.com/doi/abs/10.1002/ppsc.201600073Lewis, Edward A.; Downie, Helen; Collins, Richard F.; Prestat, Eric; Lloyd, Jonathan R.; Haigh, Sarah J. , Imaging the Hydrated Microbe-Metal Interface Using Nanoscale Spectrum Imaging, 2016, Particle & Particle Systems Characterization, https://doi.org/10.1002/ppsc.201600073
    The Impact of Li Grain Size on Coulombic Efficiency in Li Batterieshttps://www.nature.com/articles/srep34267Mehdi, B. Layla; Stevens, Andrew; Qian, Jiangfeng; Park, Chiwoo; Xu, Wu; Henderson, Wesley A.; Zhang, Ji-Guang; Mueller, Karl T.; Browning, Nigel D. , The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries, 2016, Scientific Reports, 10.1038/srep34267
    Sample Preparation Methodologies for In Situ Liquid and Gaseous Cell Analytical Transmission Electron Microscopy of Electropolished Specimenshttps://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/abs/sample-preparation-methodologies-for-in-situ-liquid-and-gaseous-cell-analytical-transmission-electron-microscopy-of-electropolished-specimens/2EF60DDA6421035B91C31E0C13B2B902Zhong, Xiang Li; Schilling, Sibylle; Zaluzec, Nestor J.; Burke, M. Grace , Sample Preparation Methodologies for In Situ Liquid and Gaseous Cell Analytical Transmission Electron Microscopy of Electropolished Specimens, 2016, Microscopy and Microanalysis, 10.1017/S1431927616011855
    Atomistic Insights into the Oriented Attachment of Tunnel-Based Oxide Nanostructureshttps://doi.org/10.1021/acsnano.5b05535Yuan, Yifei; Wood, Stephen M.; He, Kun; Yao, Wentao; Tompsett, David; Lu, Jun; Nie, Anmin; Islam, M. Saiful; Shahbazian-Yassar, Reza , Atomistic Insights into the Oriented Attachment of Tunnel-Based Oxide Nanostructures, 2016, ACS Nano, 10.1021/acsnano.5b05535
    Impact of Membrane-Induced Particle Immobilization on Seeded Growth Monitored by In Situ Liquid Scanning Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201502974Weiner, Rebecca G.; Chen, Dennis P.; Unocic, Raymond R.; Skrabalak, Sara E. , Impact of Membrane-Induced Particle Immobilization on Seeded Growth Monitored by In Situ Liquid Scanning Transmission Electron Microscopy, 2016, Small, https://doi.org/10.1002/smll.201502974
    Precise In Situ Modulation of Local Liquid Chemistry via Electron Irradiation in Nanoreactors Based on Graphene Liquid Cellshttps://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201602273Wang, Canhui; Shokuhfar, Tolou; Klie, Robert F. , Precise In Situ Modulation of Local Liquid Chemistry via Electron Irradiation in Nanoreactors Based on Graphene Liquid Cells, 2016, Advanced Materials, 10.1002/adma.201602273
    Direct-write liquid phase transformations with a scanning transmission electron microscopehttps://pubs.rsc.org/en/content/articlelanding/2016/nr/c6nr04994jUnocic, Raymond R.; Lupini, Andrew R.; Borisevich, Albina Y.; Cullen, David A.; Kalinin, Sergei V.; Jesse, Stephen , Direct-write liquid phase transformations with a scanning transmission electron microscope, 2016, Nanoscale, 10.1039/C6NR04994J
    Anomalous Growth and Coalescence Dynamics of Hybrid Perovskite Nanoparticles Observed by Liquid-Cell Transmission Electron Microscopyhttps://doi.org/10.1021/acsnano.6b04234Qin, Fuyu; Wang, Zhiwei; Wang, Zhong Lin , Anomalous Growth and Coalescence Dynamics of Hybrid Perovskite Nanoparticles Observed by Liquid-Cell Transmission Electron Microscopy, 2016, ACS Nano, 10.1021/acsnano.6b04234
    In Situ Observation of Hematite Nanoparticle Aggregates Using Liquid Cell Transmission Electron Microscopyhttps://doi.org/10.1021/acs.est.5b06305Liu, Juan; Wang, Zhiwei; Sheng, Anxu; Liu, Feng; Qin, Fuyu; Wang, Zhong Lin , In Situ Observation of Hematite Nanoparticle Aggregates Using Liquid Cell Transmission Electron Microscopy, 2016, Environmental Science & Technology, 10.1021/acs.est.5b06305
    Observing Growth of Nanostructured ZnO in Liquidhttps://doi.org/10.1021/acs.chemmater.6b02040Hsieh, Ting-Huan; Chen, Jui-Yuan; Huang, Chun-Wei; Wu, Wen-Wei , Observing Growth of Nanostructured ZnO in Liquid, 2016, Chemistry of Materials, 10.1021/acs.chemmater.6b02040
    Semiconductor–Metal Nanofloret Hybrid Structures by Self-Processing Synthesishttps://doi.org/10.1021/jacs.5b12667Hazut, Ori; Waichman, Sharon; Subramani, Thangavel; Sarkar, Debabrata; Dash, Sthitaprajna; Roncal-Herrero, Teresa; Kröger, Roland; Yerushalmi, Roie , Semiconductor–Metal Nanofloret Hybrid Structures by Self-Processing Synthesis, 2016, Journal of the American Chemical Society, 10.1021/jacs.5b12667
    Synergistic Biomineralization Phenomena Created by a Combinatorial Nacre Protein Model Systemhttps://doi.org/10.1021/acs.biochem.6b00163Chang, Eric P.; Roncal-Herrero, Teresa; Morgan, Tamara; Dunn, Katherine E.; Rao, Ashit; Kunitake, Jennie A. M. R.; Lui, Susan; Bilton, Matthew; Estroff, Lara A.; Kröger, Roland; Johnson, Steven; Cölfen, Helmut; Evans, John Spencer , Synergistic Biomineralization Phenomena Created by a Combinatorial Nacre Protein Model System, 2016, Biochemistry, 10.1021/acs.biochem.6b00163
    Electrochemistry in Liquid Environments: Challenges in the Presence of Accelerated Electronshttps://www.researchgate.net/publication/310841907_Electrochemistry_in_Liquid_Environments_Challenges_in_the_Presence_of_Accelerated_ElectronsChakravadhanula, Venkata Sai Kiran; Teodoro, Thais Silva; Scherer, Torsten; Garlapati, Suresh Kumar; Kobler, Aaron; Neelisetty, Krishna Kanth; Fawey, Mohammed Hammad; Kuebel, Christian , Electrochemistry in Liquid Environments: Challenges in the Presence of Accelerated Electrons, 2016, EMC Special, -
    In-situ studies of the dendritic yttria precursor nanostructures growth dynamics at elevated temperatures using liquid-cell transmission electron microscopehttps://onlinelibrary.wiley.com/doi/full/10.1002/9783527808465.EMC2016.6563Sturm, Saso; Ambroži?, Bojan; Bele, Marjan; Kostevšek, Nina; Zuzec Rozman, Kristina , In-situ studies of the dendritic yttria precursor nanostructures growth dynamics at elevated temperatures using liquid-cell transmission electron microscope, 2016, European Microscopy Congress 2016: Proceedings, -
    Live Cell Electron Microscopy Is Probably Impossiblehttps://pubs.acs.org/doi/10.1021/acsnano.6b02809de Jonge, Niels; Peckys, Diana B. , Live Cell Electron Microscopy Is Probably Impossible, 2016, ACS Nano, 10.1021/acsnano.6b02809
    Visualizing Macromolecules in Liquid at the Nanoscalehttps://www.cambridge.org/core/product/identifier/9781316337455%23CT-bp-17/type/book_part,,-
    In situ Analytical TEM of Asphaltene Formation and Aggregation from Crude Oil,http://www.journals.cambridge.org/abstract_S1431927616004839"
    Janssen, Arne; Zaluzec, Nestor J.; Kulzick, Matthew A.; Crosher, Tom; Burke, M.G. , In situ Analytical TEM of Asphaltene Formation and Aggregation from Crude Oil, 2016, Microscopy and Microanalysis, 10.1017/S1431927616004839
    Phosphorus-Doped p–n Homojunction ZnO Nanowires: Growth Kinetics in Liquid and Their Optoelectronic Propertieshttps://doi.org/10.1021/acs.chemmater.5b01377Lee, Wei-Che; Chen, Jui-Yuan; Huang, Chun-Wei; Chiu, Chung-Hua; Lin, Ting-Yi; Wu, Wen-Wei , Phosphorus-Doped p–n Homojunction ZnO Nanowires: Growth Kinetics in Liquid and Their Optoelectronic Properties, 2015, Chemistry of Materials, 10.1021/acs.chemmater.5b01377
    Quantitative Description of Crystal Nucleation and Growth from in Situ Liquid Scanning Transmission Electron Microscopyhttps://doi.org/10.1021/acsnano.5b03720Ievlev, Anton V.; Jesse, Stephen; Cochell, Thomas J.; Unocic, Raymond R.; Protopopescu, Vladimir A.; Kalinin, Sergei V. , Quantitative Description of Crystal Nucleation and Growth from in Situ Liquid Scanning Transmission Electron Microscopy, 2015, ACS Nano, 10.1021/acsnano.5b03720
    Direct Imaging of the Electrochemical Deposition of Poly(3,4-ethylenedioxythiophene) by Transmission Electron Microscopyhttps://doi.org/10.1021/acsmacrolett.5b00479Liu, Jinglin; Wei, Bin; Sloppy, Jennifer D.; Ouyang, Liangqi; Ni, Chaoying; Martin, David C. , Direct Imaging of the Electrochemical Deposition of Poly(3,4-ethylenedioxythiophene) by Transmission Electron Microscopy, 2015, ACS Macro Letters, 10.1021/acsmacrolett.5b00479
    Exceptionally Slow Movement of Gold Nanoparticles at a Solid/Liquid Interface Investigated by Scanning Transmission Electron Microscopyhttps://doi.org/10.1021/acs.langmuir.5b00150Verch, Andreas; Pfaff, Marina; de Jonge, Niels , Exceptionally Slow Movement of Gold Nanoparticles at a Solid/Liquid Interface Investigated by Scanning Transmission Electron Microscopy, 2015, Langmuir, 10.1021/acs.langmuir.5b00150
    Writing Silica Structures in Liquid with Scanning Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201400913Put, Marcel W. P. van de; Carcouët, Camille C. M. C.; Bomans, Paul H. H.; Friedrich, Heiner; Jonge, Niels de; Sommerdijk, Nico A. J. M. , Writing Silica Structures in Liquid with Scanning Transmission Electron Microscopy, 2015, Small, https://doi.org/10.1002/smll.201400913
    Visualization of film-forming polymer particles with a liquid cell technique in a transmission electron microscopehttps://pubs.rsc.org/en/content/articlelanding/2015/an/c5an01067eLiu, Lili; Liu, Yi; Wu, Wenjun; Miller, Christopher M.; Dickey, Elizabeth C. , Visualization of film-forming polymer particles with a liquid cell technique in a transmission electron microscope, 2015, Analyst, 10.1039/C5AN01067E
    Interaction Potentials of Anisotropic Nanocrystals from the Trajectory Sampling of Particle Motion using in Situ Liquid Phase Transmission Electron Microscopyhttps://doi.org/10.1021/acscentsci.5b00001Chen, Qian; Cho, Hoduk; Manthiram, Karthish; Yoshida, Mark; Ye, Xingchen; Alivisatos, A. Paul , Interaction Potentials of Anisotropic Nanocrystals from the Trajectory Sampling of Particle Motion using in Situ Liquid Phase Transmission Electron Microscopy, 2015, ACS Central Science, 10.1021/acscentsci.5b00001
    Unravelling Kinetic and Thermodynamic Effects on the Growth of Gold Nanoplates by Liquid Transmission Electron Microscopyhttps://doi.org/10.1021/acs.nanolett.5b00140Alloyeau, Damien; Dachraoui, Walid; Javed, Yasir; Belkahla, Hannen; Wang, Guillaume; Lecoq, Hélène; Ammar, Souad; Ersen, Ovidiu; Wisnet, Andreas; Gazeau, Florence; Ricolleau, Christian , Unravelling Kinetic and Thermodynamic Effects on the Growth of Gold Nanoplates by Liquid Transmission Electron Microscopy, 2015, Nano Letters, 10.1021/acs.nanolett.5b00140
    Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathwayhttps://doi.org/10.1021/acsnano.5b03708Elgrabli, Dan; Dachraoui, Walid; Ménard-Moyon, Cécilia; Liu, Xiao Jie; Bégin, Dominique; Bégin-Colin, Sylvie; Bianco, Alberto; Gazeau, Florence; Alloyeau, Damien , Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathway, 2015, ACS Nano, 10.1021/acsnano.5b03708
    Electron beam induced chemistry of gold nanoparticles in saline solutionhttps://pubs.rsc.org/en/content/articlelanding/2015/cc/c5cc06812fHermannsdörfer, J.; Jonge, N. de; Verch, A. , Electron beam induced chemistry of gold nanoparticles in saline solution, 2015, Chemical Communications, 10.1039/C5CC06812F
    Observation and Quantification of Nanoscale Processes in Lithium Batteries by Operando Electrochemical (S)TEMhttps://doi.org/10.1021/acs.nanolett.5b00175Mehdi, B. L.; Qian, J.; Nasybulin, E.; Park, C.; Welch, D. A.; Faller, R.; Mehta, H.; Henderson, W. A.; Xu, W.; Wang, C. M.; Evans, J. E.; Liu, J.; Zhang, J. -G.; Mueller, K. T.; Browning, N. D. , Observation and Quantification of Nanoscale Processes in Lithium Batteries by Operando Electrochemical (S)TEM, 2015, Nano Letters, 10.1021/acs.nanolett.5b00175
    Nanoscale Imaging of Fundamental Li Battery Chemistry: Solid-Electrolyte Interphase Formation and Preferential Growth of Lithium Metal Nanoclustershttps://doi.org/10.1021/nl5048626Sacci, Robert L.; Black, Jennifer M.; Balke, Nina; Dudney, Nancy J.; More, Karren L.; Unocic, Raymond R. , Nanoscale Imaging of Fundamental Li Battery Chemistry: Solid-Electrolyte Interphase Formation and Preferential Growth of Lithium Metal Nanoclusters, 2015, Nano Letters, 10.1021/nl5048626
    Microscopy of nanoparticulate dispersionshttps://onlinelibrary.wiley.com/doi/10.1111/jmi.12290Brydson, R.; Brown, A.; Hodges, C.; Abellan, P.; Hondow, N. , Microscopy of nanoparticulate dispersions, 2015, Journal of Microscopy, 10.1111/jmi.12290
    Estimating the effective density of engineered nanomaterials for in vitro dosimetryhttps://www.nature.com/articles/ncomms4514DeLoid, Glen; Cohen, Joel M.; Darrah, Tom; Derk, Raymond; Rojanasakul, Liying; Pyrgiotakis, Georgios; Wohlleben, Wendel; Demokritou, Philip , Estimating the effective density of engineered nanomaterials for in vitro dosimetry, 2014, Nature Communications, 10.1038/ncomms4514
    In Situ Liquid Cell TEM Study of Morphological Evolution and Degradation of Pt–Fe Nanocatalysts During Potential Cyclinghttps://doi.org/10.1021/jp506857bZhu, Guo-Zhen; Prabhudev, Sagar; Yang, Jie; Gabardo, Christine M.; Botton, Gianluigi A.; Soleymani, Leyla , In Situ Liquid Cell TEM Study of Morphological Evolution and Degradation of Pt–Fe Nanocatalysts During Potential Cycling, 2014, The Journal of Physical Chemistry C, 10.1021/jp506857b
    Liquid scanning transmission electron microscopy: Nanoscale imaging in micrometers-thick liquidshttp://www.sciencedirect.com/science/article/pii/S163107051300203XSchuh, Tobias; de Jonge, Niels , Liquid scanning transmission electron microscopy: Nanoscale imaging in micrometers-thick liquids, 2014, Comptes Rendus Physique, 10.1016/j.crhy.2013.11.004
    Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cellshttps://academic.oup.com/mam/article-abstract/20/2/346/6932360?redirectedFrom=fulltextPeckys, Diana B.; de Jonge, Niels , Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cells, 2014, Microscopy and Microanalysis, 10.1017/S1431927614000099
    Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolytehttps://doi.org/10.1021/nl404577cHoltz, Megan E.; Yu, Yingchao; Gunceler, Deniz; Gao, Jie; Sundararaman, Ravishankar; Schwarz, Kathleen A.; Arias, Tomás A.; Abruña, Héctor D.; Muller, David A. , Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte, 2014, Nano Letters, 10.1021/nl404577c
    Real-time imaging and local elemental analysis of nanostructures in liquidshttps://pubs.rsc.org/en/content/articlelanding/2014/cc/c4cc02743dLewis, Edward A.; Haigh, Sarah J.; Slater, Thomas J. A.; He, Zheyang; Kulzick, Matthew A.; Burke, M. Grace; Zaluzec, Nestor J. , Real-time imaging and local elemental analysis of nanostructures in liquids, 2014, Chemical Communications, 10.1039/C4CC02743D
    Quantitative electrochemical measurements using in situ ec-S/TEM deviceshttps://pubmed.ncbi.nlm.nih.gov/24618013/Unocic, Raymond R.; Sacci, Robert L.; Brown, Gilbert M.; Veith, Gabriel M.; Dudney, Nancy J.; More, Karren L.; Walden, Franklin S.; Gardiner, Daniel S.; Damiano, John; Nackashi, David P. , Quantitative electrochemical measurements using in situ ec-S/TEM devices, 2014, Microscopy and Microanalysis, 10.1017/S1431927614000166
    An Oligomeric C-RING Nacre Protein Influences Prenucleation Events and Organizes Mineral Nanoparticleshttps://doi.org/10.1021/bi5008854Perovic, Iva; Verch, Andreas; Chang, Eric P.; Rao, Ashit; Cölfen, Helmut; Kröger, Roland; Evans, John Spencer , An Oligomeric C-RING Nacre Protein Influences Prenucleation Events and Organizes Mineral Nanoparticles, 2014, Biochemistry, 10.1021/bi5008854
    X-ray energy-dispersive spectrometry during in situ liquid cell studies using an analytical electron microscopehttps://academic.oup.com/mam/article-abstract/20/2/323/6932345Zaluzec, Nestor J.; Burke, M. Grace; Haigh, Sarah J.; Kulzick, Matthew A. , X-ray energy-dispersive spectrometry during in situ liquid cell studies using an analytical electron microscope, 2014, Microscopy and Microanalysis, 10.1017/S1431927614000154
    Tuning Electrodeposition Parameters for Tailored Nanoparticle Size, Shape, and Morphology: An In Situ ec-STEM Investigationhttps://www.cambridge.org/core/product/identifier/S143192761400926X/type/journal_articleUnocic, Raymond R.; Sacci, Robert L.; Veith, Gabriel M.; Dudney, Nancy J.; More, Karren L. , Tuning Electrodeposition Parameters for Tailored Nanoparticle Size, Shape, and Morphology: An In Situ ec-STEM Investigation, 2014, Microscopy and Microanalysis, 10.1017/S143192761400926X
    Dendritic Gold Nanowire Growth Observed in Liquid with Transmission Electron Microscopyhttps://doi.org/10.1021/la401584zKraus, Tobias; de Jonge, Niels , Dendritic Gold Nanowire Growth Observed in Liquid with Transmission Electron Microscopy, 2013, Langmuir, 10.1021/la401584z
    In-Situ Transmission Electron Microscopy of Liposomes in an Aqueous Environmenthttps://doi.org/10.1021/la401288gHoppe, Sarah M.; Sasaki, Darryl Y.; Kinghorn, Aubrianna N.; Hattar, Khalid , In-Situ Transmission Electron Microscopy of Liposomes in an Aqueous Environment, 2013, Langmuir, 10.1021/la401288g
    In Situ Electron Energy-Loss Spectroscopy in Liquidshttp://arxiv.org/abs/1212.1501Holtz, Megan E.; Yu, Yingchao; Gao, Jie; Abruña, Héctor D.; Muller, David A. , In Situ Electron Energy-Loss Spectroscopy in Liquids, 2013, Microscopy and Microanalysis, 10.1017/S1431927613001505
    Video-frequency scanning transmission electron microscopy of moving gold nanoparticles in liquidhttp://www.sciencedirect.com/science/article/pii/S096843281200011XRing, Elisabeth A.; de Jonge, Niels , Video-frequency scanning transmission electron microscopy of moving gold nanoparticles in liquid, 2012, Micron, 10.1016/j.micron.2012.01.010
    UV-induced photochemical transformations of citrate-capped silver nanoparticle suspensionshttps://doi.org/10.1007/s11051-012-1139-3Gorham, Justin M.; MacCuspie, Robert I.; Klein, Kate L.; Fairbrother, D. Howard; Holbrook, R. David , UV-induced photochemical transformations of citrate-capped silver nanoparticle suspensions, 2012, Journal of Nanoparticle Research, 10.1007/s11051-012-1139-3
    Visualizing Gold Nanoparticle Uptake in Live Cells with Liquid Scanning Transmission Electron Microscopyhttps://doi.org/10.1021/nl200285rPeckys, Diana B.; de Jonge, Niels , Visualizing Gold Nanoparticle Uptake in Live Cells with Liquid Scanning Transmission Electron Microscopy, 2011, Nano Letters, 10.1021/nl200285r
    Transmission electron microscopy with a liquid flow cellhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2818.2010.03484.xKlein, K. L.; Anderson, I. M.; Jonge, N. De , Transmission electron microscopy with a liquid flow cell, 2011, Journal of Microscopy, 10.1111/j.1365-2818.2010.03484.x
    Silicon nitride windows for electron microscopy of whole cellshttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2818.2011.03501.xRing, E. A.; Peckys, D. B.; Dukes, M. J.; Baudoin, J. P.; Jonge, N. De , Silicon nitride windows for electron microscopy of whole cells, 2011, Journal of Microscopy, 10.1111/j.1365-2818.2011.03501.x
    Fully hydrated yeast cells imaged with electron microscopyhttps://www.sciencedirect.com/science/article/pii/S0006349511004036Peckys, Diana B.; Mazur, Peter; Gould, Kathleen L.; de Jonge, Niels , Fully hydrated yeast cells imaged with electron microscopy, 2011, Biophysical Journal, 10.1016/j.bpj.2011.03.045
    Electron microscopy of specimens in liquidhttp://www.nature.com/articles/nnano.2011.161de Jonge, Niels; Ross, Frances M. , Electron microscopy of specimens in liquid, 2011, Nature Nanotechnology, 10.1038/nnano.2011.161
    Low-Cost, Atmospheric-Pressure Scanning Transmission Electron Microscopyhttps://www.cambridge.org/core/product/identifier/S1551929511000228/type/journal_articlede Jonge, Niels; Ring, Elisabeth A.; Bigelow, Wilbur C.; Veith, Gabriel M. , Low-Cost, Atmospheric-Pressure Scanning Transmission Electron Microscopy, 2011, Microscopy Today, 10.1017/S1551929511000228
    Imaging Specific Protein Labels on Eukaryotic Cells in Liquid with Scanning Transmission Electron Microscopyhttps://www.cambridge.org/core/product/identifier/S1551929511000903/type/journal_articlePeckys, Diana B.; Dukes, Madeline J.; Ring, Elisabeth A.; Piston, David W.; de Jonge, Niels , Imaging Specific Protein Labels on Eukaryotic Cells in Liquid with Scanning Transmission Electron Microscopy, 2011, Microscopy Today, 10.1017/S1551929511000903
    Energy-Loss Characteristics for EFTEM Imaging with a Liquid Flow Cellhttps://www.cambridge.org/core/product/identifier/S1431927611004776/type/journal_articleKlein, K; de Jonge, N; Anderson, I , Energy-Loss Characteristics for EFTEM Imaging with a Liquid Flow Cell, 2011, Microscopy and Microanalysis, 10.1017/S1431927611004776
    Microfluidic system for transmission electron microscopyhttps://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/abs/microfluidic-system-for-transmission-electron-microscopy/DD52A099B00899B61081DDF05BFC0F49Ring, Elisabeth A.; de Jonge, Niels , Microfluidic system for transmission electron microscopy, 2010, Microscopy and Microanalysis, 10.1017/S1431927610093669
    Correlative Fluorescence Microscopy and Scanning Transmission Electron Microscopy of Quantum-Dot-Labeled Proteins in Whole Cells in Liquidhttps://doi.org/10.1021/nn1010232Dukes, Madeline J.; Peckys, Diana B.; de Jonge, Niels , Correlative Fluorescence Microscopy and Scanning Transmission Electron Microscopy of Quantum-Dot-Labeled Proteins in Whole Cells in Liquid, 2010, ACS Nano, 10.1021/nn1010232
    Simulating STEM imaging of nanoparticles in micrometers-thick substrateshttps://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/simulating-stem-imaging-of-nanoparticles-in-micrometersthick-substrates/B7C114D223F7FC8615D4168BDFACADC7Demers, H.; Poirier-Demers, N.; Drouin, D.; de Jonge, N. , Simulating STEM imaging of nanoparticles in micrometers-thick substrates, 2010, Microscopy and Microanalysis, 10.1017/S1431927610094080
    Nanometer-resolution electron microscopy through micrometers-thick water layershttp://www.sciencedirect.com/science/article/pii/S0304399110001099de Jonge, Niels; Poirier-Demers, Nicolas; Demers, Hendrix; Peckys, Diana B.; Drouin, Dominique , Nanometer-resolution electron microscopy through micrometers-thick water layers, 2010, Ultramicroscopy, 10.1016/j.ultramic.2010.04.001
    Atmospheric Pressure Scanning Transmission Electron Microscopyhttps://doi.org/10.1021/nl904254gde Jonge, Niels; Bigelow, Wilbur C.; Veith, Gabriel M. , Atmospheric Pressure Scanning Transmission Electron Microscopy, 2010, Nano Letters, 10.1021/nl904254g
    Nanoscale Imaging of Whole Cells Using a Liquid Enclosure and a Scanning Transmission Electron Microscopehttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0008214Peckys, Diana B.; Veith, Gabriel M.; Joy, David C.; Jonge, Niels de , Nanoscale Imaging of Whole Cells Using a Liquid Enclosure and a Scanning Transmission Electron Microscope, 2009, PLOS ONE, 10.1371/journal.pone.0008214
    Electron microscopy of whole cells in liquid with nanometer resolutionhttps://www.pnas.org/content/early/2009/01/21/0809567106Jonge, N. de; Peckys, D. B.; Kremers, G. J.; Piston, D. W. , Electron microscopy of whole cells in liquid with nanometer resolution, 2009, Proceedings of the National Academy of Sciences, 10.1073/pnas.0809567106

    Current User?

    Find our preparation guides, applications notes and other support material on our Success Community.

    Contact Us

    Request a price quote, find out more information, or get in touch with us with any questions.