ATMOSPHERE AX

In Situ Gas Cell

Study atomic-scale gas-solid interactions in the (scanning) transmission electron microscope to drive innovation in heterogeneous catalysis, materials science, and more.

ATMOSPHERE AX INTRODUCTION

Atmosphere AX is an in situ gas phase system for transmission electron microscopy (TEM). It enables researchers to observe their materials under realistic, functional conditions while taking advantage of the resolving power of the TEM. With full control over temperature, pressure, and gas/humidity composition, it allows for direct visualization of processes like catalytic activation, operation, and degradation.

Flexible in situ environments: Full control to create the most relevant environments with unmatched flexibility in gas mixing and compatibility


Machine vision software suite: Integrated machine vision software manages many data collection tasks in the background so you can focus on the experiment at hand.


Front-to-back workflow: Each step of the research process, from sample preparation to data management and analysis, has been considered to maximize rigor and reproducibility.


Safety: Safety of the TEM is top priority – none of our systems require disassembly that would put the TEM at risk to enable different imaging techniques or perform maintenance.

Temperature up to 1000°C

Up to 1 bar

H₂,O₂, CO, CO₂, CH₄, custom mixtures, humidity, organic vapors, and more

Quiet, integrated residual gas analyzer

Live physical drift mitigation, dose analysis, and offline data analysis

ATMOSPHERE AX WORKFLOW

Prep

Preperation

• Precise dropcasting
• Reproducible FIB deposition
• Sample screening
• Global scientific support

Collect

Collection

• Live physical drift control
• Dose quantification
• Metadata indexing
• Integrated notebook

Analyze

Analyze

  • Flexible environmental control
  • Quiet gas analysis
  • TEM/STEM/EDX Optimized
  • Maximum cleanliness and safety
  • Publish

    Publish

    • Consolidated visualization
    • Fast filtering
    • Historical experimental records
    • RDM/FAIR compliant

    APPLICATION EXAMPLES FROM RESEARCH

    CATALYST SYNTHESIS / REDUCTION / OPERATION

    Catalyst synthesis consists of multiple steps, such as drying, calcination and reduction. The synthesis of phyllosilicates, for example, exhibits high control over particle size and shape. This study highlights the mechanism and kinetics of nickel particle formation on silica supports.

    Turner, S.J. et al. (2023) J. Phys. Chem. C, 127, pp. 7772–7783

    FUEL CELLS

    In order, to realize improvements in the activity, efficiency, and stability of protein-exchange membrane fuel cells, a better mechanistic understanding of the mechanisms that control the growth of oxygen reduction reaction (ORR) catalysts is required. In this research, the synthesis of modified hydrogen-assisted platinum nanowires was visualized using the Atmosphere AX system.

    Ma, Y. et al. (2017), Adv. Mater., 29, 1703460

    CORROSION 

    Corrosion is a significant problem for infrastructure, for both bulk and nanoscale functional nanomaterial. The Atmosphere AX system can be used to study corrosion of nanoparticles or FIB lamella under their native operating environments.

    Du, J.S. et al. (2021) Adv. Funct. Mater., 31, 2105866

     MOLECULAR SIEVES

    Zeolites are used for many applications, such as molecular sieves. Their properties are determined by their pore size and shapes, creating preferred binding sites for certain molecules. Here, the Atmosphere AX system was used to introduce vapor (benzene) and obverse the changes in the zeolite cage structure during benzene adsorption.

    Xiong, H. et al. (2022) Science, 376, 491–496

    PYROLYSIS

    Pyrolysis is used as a synthesis method for many different materials. During pyrolysis, a material, such as the zeolitic imidazolate framework shown here, is heated to extreme temperatures and under an atmosphere to produce a catalyst material.

    Hsiao, K.-Y. et al. (2023) ACS Applied Nano Materials, acsanm.3c01669

    ATMOSPHERE AX COMPONENTS

    All components are fully approved by the major microscope manufacturers to meet their rigorous standards for safety, compatibility, and reliability.

    Atmosphere chip no background

    SAMPLE SUPPORT: E-CHIPS

    The Atmosphere AX solution uses custom-made microelectromechanical systems (MEMS) as sample supports to add temperature within the environmental holder. All MEMS devices (E-chips™) are designed, fabricated, and quality checked in-house, which gives Protochips an immense amount of control and oversight to ensure quality and proper functionality as well as keep cost minimized.

     

    Uniquely utilizing silicon carbide as a heating membrane instead of the traditional metal coil, Atmosphere E-chips provide superior uniformity and accuracy to other MEMS chips on the market.

    AXON MACHINE VISION SOFTWARE PLATFORM

    TEM Processing Software

    There are many variables to control and record during an in situ TEM experiment and the AXON machine vision software platform provides automation without taking away control:

     

    • Live physical drift correction
    • Constant parameter recording and indexing (TEM, camera, and in situ parameters)
    • Real-time electron dose calculations
    • Electron dose exposure tracking and mapping
    • Continuous recording for instant look-back.

     

    You leave the TEM lab with a fully drift corrected and metadata-aligned dataset with all parameters recorded, notes integrated, and ready for trend analysis and movie creation.

     

    • Learn faster
    • Share easier
    • Publish sooner
    • Increase reproducibility
    • Spend less time and money at the TEM
    • RDM/FAIR compliant

    ATMOSPHERE AX LIBRARY

    Published research using the Atmosphere AX solution. Use the button on the right to filter the publications.

    JOURNAL ARTICLES

    TitleURLCitation
    Visualization of the structural transformation of NiO/YSZ/BZY nanocomposite particles using in situ gas environmental transmission electron microscopyhttp://xlink.rsc.org/?DOI=D3NR04525KLiu, Zheng; Shimada, Hiroyuki , Visualization of the structural transformation of NiO/YSZ/BZY nanocomposite particles using in situ gas environmental transmission electron microscopy, 2024, Nanoscale, 10.1039/D3NR04525K
    Elucidating the Reaction Pathway in the Ammonolysis of MoO 3 via In Situ Powder X-ray Diffraction and Transmission Electron Microscopyhttps://pubs.acs.org/doi/10.1021/acs.chemmater.3c01344Zhang, Chi; Goldfine, Elise A.; He, Kun; Wenderott, Jill K.; Pandey, Shobhit A.; Dos Reis, Roberto; Shen, Jiahong; Wolverton, Chris; Bedzyk, Michael J.; Poeppelmeier, Kenneth R.; Dravid, Vinayak P.; Haile, Sossina M. , Elucidating the Reaction Pathway in the Ammonolysis of MoO 3 via In Situ Powder X-ray Diffraction and Transmission Electron Microscopy, 2024, Chemistry of Materials, 10.1021/acs.chemmater.3c01344
    Oscillatory phase transition induced structural extension during iron oxide reductionhttps://linkinghub.elsevier.com/retrieve/pii/S2667325824000037Fu, Haoyang; Chen, Qingze; Min, Benzhi; Li, Shuzhou; Chen, Xiaodong; Ling, Lan , Oscillatory phase transition induced structural extension during iron oxide reduction, 2024, Fundamental Research, 10.1016/j.fmre.2023.10.023
    Ultrathin silicon nitride microchip for in situ/operando microscopy with high spatial resolution and spectral visibilityhttps://www.science.org/doi/10.1126/sciadv.adj6417Koo, Kunmo; Li, Zhiwei; Liu, Yukun; Ribet, Stephanie M.; Fu, Xianbiao; Jia, Ying; Chen, Xinqi; Shekhawat, Gajendra; Smeets, Paul J. M.; Dos Reis, Roberto; Park, Jungjae; Yuk, Jong Min; Hu, Xiaobing; Dravid, Vinayak P. , Ultrathin silicon nitride microchip for in situ/operando microscopy with high spatial resolution and spectral visibility, 2024, Science Advances, 10.1126/sciadv.adj6417
    Synthesis of core@shell catalysts guided by Tammann temperaturehttps://www.nature.com/articles/s41467-024-44705-5Xiong, Pei; Xu, Zhihang; Wu, Tai-Sing; Yang, Tong; Lei, Qiong; Li, Jiangtong; Li, Guangchao; Yang, Ming; Soo, Yun-Liang; Bennett, Robert David; Lau, Shu Ping; Tsang, Shik Chi Edman; Zhu, Ye; Li, Molly Meng-Jung , Synthesis of core@shell catalysts guided by Tammann temperature, 2024, Nature Communications, 10.1038/s41467-024-44705-5
    Synthesis of uniform Fe2O3@Y2O3 yolk-shell nanoreactors as chemical looping oxygen carriershttps://www-sciencedirect-com/science/article/pii/S0926337324002492Fan, Qianwenhao; Tan, Mingwu; Yao, Bingqing; Saqline, Syed; Tao, Longgang; He, Qian; Liu, Wen , Synthesis of uniform Fe2O3@Y2O3 yolk-shell nanoreactors as chemical looping oxygen carriers, 2024, Applied Catalysis B: Environment and Energy, 10.1016/j.apcatb.2024.123935
    Liquid metals for boosting stability of zeolite catalysts in the conversion of methanol to hydrocarbonshttps://www.nature.com/articles/s41467-024-46232-9Zhou, Yong; Santos, Sara; Shamzhy, Mariya; Marinova, Maya; Blanchenet, Anne-Marie; Kolyagin, Yury G.; Simon, Pardis; Trentesaux, Martine; Sharna, Sharmin; Ersen, Ovidiu; Zholobenko, Vladimir L.; Saeys, Mark; Khodakov, Andrei Y.; Ordomsky, Vitaly V. , Liquid metals for boosting stability of zeolite catalysts in the conversion of methanol to hydrocarbons, 2024, Nature Communications, 10.1038/s41467-024-46232-9
    Sintering Mechanism of Pt/Al 2 O 3 in Complex Emission Gases Elucidated via In Situ Environmental STEMhttps://pubs.acs.org/doi/10.1021/acsmaterialslett.4c00422Smith, Jacob; Liccardo, Gennaro; Cendejas, Melissa C.; Stone, Michael; Mandal, Shyama; Abild-Pedersen, Frank; Cargnello, Matteo; Chi, Miaofang , Sintering Mechanism of Pt/Al 2 O 3 in Complex Emission Gases Elucidated via In Situ Environmental STEM, 2024, ACS Materials Letters, 10.1021/acsmaterialslett.4c00422
    Investigating Palladium Nanoparticle Morphogenesis on Zeolite for Passive NO x Adsorption via In Situ Transmission Electron Microscopy Analysis under Hydrothermal Conditionshttps://pubs.acs.org/doi/10.1021/acsanm.4c00429Pulinthanathu Sree, Sreeprasanth; Smet, Sam; Bellani, Claudio; Geerts-Claes, Hannelore; Straubinger, Rainer; Seo, Jin Won; Martens, Johan , Investigating Palladium Nanoparticle Morphogenesis on Zeolite for Passive NO x Adsorption via In Situ Transmission Electron Microscopy Analysis under Hydrothermal Conditions, 2024, ACS Applied Nano Materials, 10.1021/acsanm.4c00429
    Tuning the Size of TiO 2 -Supported Co Nanoparticle Fischer–Tropsch Catalysts Using Mn Additionshttps://pubs.acs.org/doi/10.1021/acscatal.4c02721Lindley, Matthew; Stishenko, Pavel; Crawley, James W. M.; Tinkamanyire, Fred; Smith, Matthew; Paterson, James; Peacock, Mark; Xu, Zhuoran; Hardacre, Christopher; Walton, Alex S.; Logsdail, Andrew J.; Haigh, Sarah J. , Tuning the Size of TiO 2 -Supported Co Nanoparticle Fischer–Tropsch Catalysts Using Mn Additions, 2024, ACS Catalysis, 10.1021/acscatal.4c02721
    New solvothermal flow synthesis of strontium titanate nanoparticles based on the use of acetylacetonate precursors in water/ethanol mixturehttps://linkinghub.elsevier.com/retrieve/pii/S0896844624001888Dandre, A.; Philippot, G.; Maglione, M.; Bassat, J.M.; Baaziz, W.; Ersen, O.; Aymonier, C. , New solvothermal flow synthesis of strontium titanate nanoparticles based on the use of acetylacetonate precursors in water/ethanol mixture, 2024, The Journal of Supercritical Fluids, 10.1016/j.supflu.2024.106353
    Balancing act: influence of Cu content in NiCu/C catalysts for methane decompositionhttps://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00138aSchoemaker, Suzan E.; Bismeijer, Stefan; Wezendonk, Dennie F. L.; Meeldijk, Johannes D.; Welling, Tom A. J.; De Jongh, Petra E. , Balancing act: influence of Cu content in NiCu/C catalysts for methane decomposition, 2024, Materials Advances, 10.1039/D4MA00138A
    An In Situ TEM Study of the Influence of Water Vapor on Reduction of Nickel Phyllosilicate – Retarded Growth of Metal Nanoparticles at Higher Rateshttps://onlinelibrary.wiley.com/doi/10.1002/smll.202401009Turner, Savannah. J.; Visser, Nienke. L.; Dalebout, Remco; Wezendonk, Dennie F. L.; De Jongh, Petra E.; De Jong, Krijn P. , An In Situ TEM Study of the Influence of Water Vapor on Reduction of Nickel Phyllosilicate – Retarded Growth of Metal Nanoparticles at Higher Rates, 2024, Small, 10.1002/smll.202401009
    Unraveling the adsorption-limited hydrogen oxidation reaction at palladium surface via in situ electron microscopyhttps://pnas.org/doi/10.1073/pnas.2408277121Liu, Yukun; Koo, Kunmo; Mao, Zugang; Fu, Xianbiao; Hu, Xiaobing; Dravid, Vinayak P. , Unraveling the adsorption-limited hydrogen oxidation reaction at palladium surface via in situ electron microscopy, 2024, Proceedings of the National Academy of Sciences, 10.1073/pnas.2408277121
    Atomic-Scale Insights Into the Thermal Stability of High-Entropy Nanoalloyshttps://onlinelibrary.wiley.com/doi/10.1002/adma.202414510Krouna, Syrine; Acheche, Anissa; Wang, Guillaume; Pena, Nathaly Ortiz; Gatti, Riccardo; Ricolleau, Christian; Amara, Hakim; Nelayah, Jaysen; Alloyeau, Damien , Atomic-Scale Insights Into the Thermal Stability of High-Entropy Nanoalloys, 2024, Advanced Materials, 10.1002/adma.202414510
    Ga-doped ZnO nanoparticles for enhanced CO2 gas sensing applicationshttps://www.nature.com/articles/s41598-024-81279-0Taha, Inas; Abdulhamid, Zeyad M.; Straubinger, Rainer; Emwas, Abdul-Hamid; Polychronopoulou, Kyriaki; Anjum, Dalaver H. , Ga-doped ZnO nanoparticles for enhanced CO2 gas sensing applications, 2024, Scientific Reports, 10.1038/s41598-024-81279-0
    Local Hydrogen Concentration and Distribution in Pd Nanoparticles: An In Situ STEM-EELS Approachhttps://onlinelibrary.wiley.com/doi/10.1002/smll.202407092Korneychuk, Svetlana; Wagner, Stefan; Rohleder, Darius; Vana, Philipp; Pundt, Astrid , Local Hydrogen Concentration and Distribution in Pd Nanoparticles: An In Situ STEM-EELS Approach, 2024, Small, 10.1002/smll.202407092
    In Situ TEM Study of the Genesis of Supported Nickel Catalystshttps://pubs.acs.org/doi/10.1021/acs.jpcc.3c01117Turner, Savannah J.; Wezendonk, Dennie F. L.; Terorde, Robert J. A. M.; de Jong, Krijn P. , In Situ TEM Study of the Genesis of Supported Nickel Catalysts, 2023, The Journal of Physical Chemistry C, 10.1021/acs.jpcc.3c01117
    Kinking of GaP Nanowires Grown in an In Situ (S)TEM Gas Cell Holderhttps://onlinelibrary.wiley.com/doi/10.1002/admi.202202507Krug, David; Widemann, Maximilian; Gruber, Felix; Ahmed, Shamail; Demuth, Thomas; Beyer, Andreas; Volz, Kerstin , Kinking of GaP Nanowires Grown in an In Situ (S)TEM Gas Cell Holder, 2023, Advanced Materials Interfaces, 10.1002/admi.202202507
    Environment-Dependent Structural Evolution and Electrocatalytic Performance in N 2 Reduction of Mo-Based ZIF-8https://pubs.acs.org/doi/10.1021/acsanm.3c01669Hsiao, Kai-Yuan; Tseng, Yu-Han; Chiang, Chao-Lung; Chen, Yan-De; Lin, Yan-Gu; Lu, Ming-Yen , Environment-Dependent Structural Evolution and Electrocatalytic Performance in N 2 Reduction of Mo-Based ZIF-8, 2023, ACS Applied Nano Materials, 10.1021/acsanm.3c01669
    Formation mechanism of high-index faceted Pt-Bi alloy nanoparticles by evaporation-induced growth from metal saltshttps://www.nature.com/articles/s41467-023-39458-6Koo, Kunmo; Shen, Bo; Baik, Sung-Il; Mao, Zugang; Smeets, Paul J. M.; Cheuk, Ivan; He, Kun; Dos Reis, Roberto; Huang, Liliang; Ye, Zihao; Hu, Xiaobing; Mirkin, Chad A.; Dravid, Vinayak P. , Formation mechanism of high-index faceted Pt-Bi alloy nanoparticles by evaporation-induced growth from metal salts, 2023, Nature Communications, 10.1038/s41467-023-39458-6
    Atomic Scale Observation of the Structural Dynamics of Supported Gold Nanocatalysts under 1,3-Butadiene by in situ Environmental Transmission Electron Microscopyhttps://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202300434Nassereddine, Abdallah; Delannoy, Laurent; Ricolleau, Christian; Louis, Catherine; Alloyeau, Damien; Wang, Guillaume; Wang, Qing; Guesmi, Hazar; Nelayah, Jaysen , Atomic Scale Observation of the Structural Dynamics of Supported Gold Nanocatalysts under 1,3-Butadiene by in situ Environmental Transmission Electron Microscopy, 2023, ChemCatChem, 10.1002/cctc.202300434
    Visualizing the Flexibility of RHO Nanozeolite: Experiment and Modelinghttps://pubs.acs.org/doi/10.1021/jacs.3c02822Clatworthy, Edwin B.; Moldovan, Simona; Nakouri, Kalthoum; Gramatikov, Stoyan P.; Dalena, Francesco; Daturi, Marco; Petkov, Petko St.; Vayssilov, Georgi N.; Mintova, Svetlana , Visualizing the Flexibility of RHO Nanozeolite: Experiment and Modeling, 2023, Journal of the American Chemical Society, 10.1021/jacs.3c02822
    Shedding Light on the Birth of Hybrid Perovskites: A Correlative Study by In Situ Electron Microscopy and Synchrotron-Based X-ray Scatteringhttps://pubs.acs.org/doi/10.1021/acs.chemmater.3c01167Sidhoum, Charles; Constantin, Doru; Ihiawakrim, Dris; Lenertz, Marc; Bizien, Thomas; Sanchez, Clément; Ersen, Ovidiu , Shedding Light on the Birth of Hybrid Perovskites: A Correlative Study by In Situ Electron Microscopy and Synchrotron-Based X-ray Scattering, 2023, Chemistry of Materials, 10.1021/acs.chemmater.3c01167
    How Pt Influences H 2 Reactions on High Surface-Area Pt/CeO 2 Powder Catalyst Surfaceshttps://pubs.acs.org/doi/10.1021/jacsau.3c00330Lee, Jaeha; Tieu, Peter; Finzel, Jordan; Zang, Wenjie; Yan, Xingxu; Graham, George; Pan, Xiaoqing; Christopher, Phillip , How Pt Influences H 2 Reactions on High Surface-Area Pt/CeO 2 Powder Catalyst Surfaces, 2023, JACS Au, 10.1021/jacsau.3c00330
    Synthesis, characterization, and preliminary insights of ZnFe2O4 nanoparticles into potential applications, with a focus on gas sensinghttps://www.nature.com/articles/s41598-023-46960-wAbdulhamid, Zeyad M.; Dabbawala, Aasif A.; Delclos, Thomas; Straubinger, Rainer; Rueping, Magnus; Polychronopoulou, Kyriaki; Anjum, Dalaver H. , Synthesis, characterization, and preliminary insights of ZnFe2O4 nanoparticles into potential applications, with a focus on gas sensing, 2023, Scientific Reports, 10.1038/s41598-023-46960-w
    In situ TEM investigation of the oxide/metal interface during the annealing of anodically formed titanium dioxide nanotubeshttps://link.springer.com/10.1007/s10853-023-09005-1Malik, Hammad; Howard, Jerry R.; Van Devener, Brian; Mohanty, Swomitra Kumar; Carlson, Krista , In situ TEM investigation of the oxide/metal interface during the annealing of anodically formed titanium dioxide nanotubes, 2023, Journal of Materials Science, 10.1007/s10853-023-09005-1
    Pathway to defective highly active and stable MoVSbOx catalysts for ethane oxidative dehydrogenation through a dislodging process involving controlled combustion of amino-organic compoundshttps://linkinghub.elsevier.com/retrieve/pii/S0021951723003512Valente, Jaime S.; Armedáriz-Herrera, Héctor; Quintana-Solórzano, Roberto; Angeles-Chavez, Carlos; Rodríguez-Hernández, Andrea; Guzmán-Castillo, María L.; López Nieto, José M.; Mhin Nha Le, Thi; Millet, Jean-Marc M. , Pathway to defective highly active and stable MoVSbOx catalysts for ethane oxidative dehydrogenation through a dislodging process involving controlled combustion of amino-organic compounds, 2023, Journal of Catalysis, 10.1016/j.jcat.2023.115106
    Direct Observation of Ni Nanoparticle Growth in Carbon-Supported Nickel under Carbon Dioxide Hydrogenation Atmospherehttps://pubs.acs.org/doi/10.1021/acsnano.3c03721Visser, Nienke L.; Turner, Savannah J.; Stewart, Joseph A.; Vandegehuchte, Bart D.; Van Der Hoeven, Jessi E. S.; De Jongh, Petra E. , Direct Observation of Ni Nanoparticle Growth in Carbon-Supported Nickel under Carbon Dioxide Hydrogenation Atmosphere, 2023, ACS Nano, 10.1021/acsnano.3c03721
    Carbon Nanofiber Growth Rates on NiCu Catalysts: Quantitative Coupling of Macroscopic and Nanoscale In Situ Studieshttps://pubs.acs.org/doi/10.1021/acs.jpcc.3c02657Welling, Tom A. J.; Schoemaker, Suzan E.; De Jong, Krijn P.; De Jongh, Petra E. , Carbon Nanofiber Growth Rates on NiCu Catalysts: Quantitative Coupling of Macroscopic and Nanoscale In Situ Studies, 2023, The Journal of Physical Chemistry C, 10.1021/acs.jpcc.3c02657
    Metal Organic Vapor Phase Epitaxy in a Transmission Electron Microscopehttps://onlinelibrary.wiley.com/doi/10.1002/smtd.202301079Widemann, Maximilian; Krug, David; Maßmeyer, Oliver; Gruber, Felix; Beyer, Andreas; Volz, Kerstin , Metal Organic Vapor Phase Epitaxy in a Transmission Electron Microscope, 2023, Small Methods, 10.1002/smtd.202301079
    In-Situ Tem Reduction of a Solid Oxide Cell with Nio/Ysz Fuel Electrodehttps://www.ssrn.com/abstract=4604921Korneychuk, Svetlana; Grosselindemann, Cedric; Menzler, Norbert; Weber, André; Pundt, Astrid , In-Situ Tem Reduction of a Solid Oxide Cell with Nio/Ysz Fuel Electrode, 2023, SSNR, 10.2139/ssrn.4604921
    Liquid Processing of Bismuth–Silica Nanoparticle/Aluminum Matrix Nanocomposites for Heat Storage Applicationshttps://pubs.acs.org/doi/10.1021/acsanm.1c03534Ma, Binghua; Baaziz, Walid; Mazerolles, Léo; Ersen, Ovidiu; Sahut, Bernard; Sanchez, Clément; Delalande, Stéphane; Portehault, David , Liquid Processing of Bismuth–Silica Nanoparticle/Aluminum Matrix Nanocomposites for Heat Storage Applications, 2022, ACS Applied Nano Materials, 10.1021/acsanm.1c03534
    In situ imaging of the sorption-induced subcell topological flexibility of a rigid zeolite frameworkhttps://www.science.org/doi/10.1126/science.abn7667Xiong, Hao; Liu, Zhiqiang; Chen, Xiao; Wang, Huiqiu; Qian, Weizhong; Zhang, Chenxi; Zheng, Anmin; Wei, Fei , In situ imaging of the sorption-induced subcell topological flexibility of a rigid zeolite framework, 2022, Science, 10.1126/science.abn7667
    Layer-by-layer growth of bilayer graphene single-crystals enabled by self-transmitting catalytic activityhttps://arxiv.org/abs/2205.01468Zhang, Zhihong; Zhou, Linwei; Chen, Zhaoxi; Jaroš, Antonín; Kolíbal, Miroslav; Zhang, Quanzhen; Yan, Changlin; Qiao, Ruixi; Zhang, Qing; Zhang, Teng; Wei, Wei; Cui, Yi; Qiao, Jingsi; Liu, Liwei; Yang, Haitao; Cheng, Zhihai; Wang, Yeliang; Wang, Enge; Liu, Zhi; Gao, Hong-Jun; Liu, Kaihui; Wang, Zhu-Jun; Ji, Wei , Layer-by-layer growth of bilayer graphene single-crystals enabled by self-transmitting catalytic activity, 2022, ArXiv, https://doi.org/10.48550/arXiv.2205.01468
    Polymer-Mediated Particle Coarsening within Hollow Silica Shell Nanoreactorshttps://pubs.acs.org/doi/10.1021/acs.chemmater.2c00510Jibril, Liban; Cheng, Matthew; Wahl, Carolin B.; Dravid, Vinayak P.; Mirkin, Chad A. , Polymer-Mediated Particle Coarsening within Hollow Silica Shell Nanoreactors, 2022, Chemistry of Materials, 10.1021/acs.chemmater.2c00510
    In Situ Visualization on Surface Oxidative Corrosion with Free Radicals: Black Phosphorus Nanoflake as an Examplehttps://pubs.acs.org/doi/10.1021/acs.est.1c06567Li, Meirong; Mao, Chengliang; Ling, Lan , In Situ Visualization on Surface Oxidative Corrosion with Free Radicals: Black Phosphorus Nanoflake as an Example, 2022, Environmental Science & Technology, 10.1021/acs.est.1c06567
    Cu segregation in Au-Cu nanoparticles exposed to hydrogen atmospheric pressure: how is fcc symmetry maintained?https://pubs.rsc.org/en/content/articlelanding/2022/fd/d2fd00130fWang, Qing; Nassereddine, Abdallah; Loffreda, David; Ricolleau, Christian; Alloyeau, Damien; Louis, Catherine; Delannoy, Laurent; Nelayah, Jaysen; Guesmi, Hazar , Cu segregation in Au-Cu nanoparticles exposed to hydrogen atmospheric pressure: how is fcc symmetry maintained?, 2022, Faraday Discussions, 10.1039/D2FD00130F
    Atomic imaging of zeolite-confined single molecules by electron microscopyhttps://www.nature.com/articles/s41586-022-04876-xShen, Boyuan; Wang, Huiqiu; Xiong, Hao; Chen, Xiao; Bosch, Eric G. T.; Lazi?, Ivan; Qian, Weizhong; Wei, Fei , Atomic imaging of zeolite-confined single molecules by electron microscopy, 2022, Nature, 10.1038/s41586-022-04876-x
    High-Entropy-Alloy Nanocrystal Based Macro- and Mesoporous Materialshttps://pubs.acs.org/doi/10.1021/acsnano.2c05465De Marco, Maria Letizia; Baaziz, Walid; Sharna, Sharmin; Devred, François; Poleunis, Claude; Chevillot-Biraud, Alexandre; Nowak, Sophie; Haddad, Ryma; Odziomek, Mateusz; Boissière, Cédric; Debecker, Damien P.; Ersen, Ovidiu; Peron, Jennifer; Faustini, Marco , High-Entropy-Alloy Nanocrystal Based Macro- and Mesoporous Materials, 2022, ACS Nano, 10.1021/acsnano.2c05465
    Atomic-level structural responsiveness to environmental conditions from 3D electron diffractionhttps://www.nature.com/articles/s41467-022-34237-1Ling, Yang; Sun, Tu; Guo, Linshuo; Si, Xiaomeng; Jiang, Yilan; Zhang, Qing; Chen, Zhaoxi; Terasaki, Osamu; Ma, Yanhang , Atomic-level structural responsiveness to environmental conditions from 3D electron diffraction, 2022, Nature Communications, 10.1038/s41467-022-34237-1
    Visualizing the Formation of High-Entropy Fluorite Oxides from an Amorphous Precursor at Atomic Resolutionhttps://pubs.acs.org/doi/10.1021/acsnano.2c09760Su, Lei; Chen, Xi; Xu, Liang; Eldred, Tim; Smith, Jacob; DellaRova, Cierra; Wang, Hongjie; Gao, Wenpei , Visualizing the Formation of High-Entropy Fluorite Oxides from an Amorphous Precursor at Atomic Resolution, 2022, ACS Nano, 10.1021/acsnano.2c09760
    Iron-silica interaction during reduction of precipitated silica-promoted iron oxides using in situ XRD and TEMhttps://www.sciencedirect.com/science/article/pii/S0926860X21000454Coombes, M. J.; Olivier, E. J.; Prestat, E.; Haigh, S. J.; du Plessis, E.; Neethling, J. H. , Iron-silica interaction during reduction of precipitated silica-promoted iron oxides using in situ XRD and TEM, 2021, Applied Catalysis A: General, 10.1016/j.apcata.2021.118031
    An in situ investigation of the thermal decomposition of metal-organic framework NH2-MIL-125 (Ti)https://linkinghub.elsevier.com/retrieve/pii/S1387181121000834Hussain, Mian Zahid; Bahri, Mounib; Heinz, Werner R.; Jia, Quanli; Ersen, Ovidiu; Kratky, Tim; Fischer, Roland A.; Zhu, Yanqiu; Xia, Yongde , An in situ investigation of the thermal decomposition of metal-organic framework NH2-MIL-125 (Ti), 2021, Microporous and Mesoporous Materials, 10.1016/j.micromeso.2021.110957
    Catalysts by pyrolysis: Direct observation of chemical and morphological transformations leading to transition metal-nitrogen-carbon materialshttps://www.sciencedirect.com/science/article/pii/S136970212100050XHuang, Ying; Chen, Yechuan; Xu, Mingjie; Asset, Tristan; Tieu, Peter; Gili, Albert; Kulkarni, Devashish; De Andrade, Vincent; De Carlo, Francesco; Barnard, Harold S.; Doran, Andrew; Parkinson, Dilworth Y.; Pan, Xiaoqing; Atanassov, Plamen; Zenyuk, Iryna V. , Catalysts by pyrolysis: Direct observation of chemical and morphological transformations leading to transition metal-nitrogen-carbon materials, 2021, Materials Today, 10.1016/j.mattod.2021.02.006
    In Situ TEM Study of Rh Particle Sintering for Three-Way Catalysts in High Temperatureshttps://www.mdpi.com/2073-4344/11/1/19Nakayama, Hiroki; Nagata, Makoto; Abe, Hideki; Shimizu, Yukihiro , In Situ TEM Study of Rh Particle Sintering for Three-Way Catalysts in High Temperatures, 2021, Catalysts, 10.3390/catal11010019
    In situ STEM study on the morphological evolution of copper-based nanoparticles during high-temperature redox reactionshttps://pubs.rsc.org/en/content/articlelanding/2021/nr/d1nr01648bSharna, Sharmin; Bahri, Mounib; Bouillet, Corinne; Rouchon, Virgile; Lambert, Arnold; Gay, Anne-Sophie; Chiche, David; Ersen, Ovidiu , In situ STEM study on the morphological evolution of copper-based nanoparticles during high-temperature redox reactions, 2021, Nanoscale, https://doi.org/10.1039/D1NR01648B
    Revealing Size Dependent Structural Transitions in Supported Gold Nanoparticles in Hydrogen at Atmospheric Pressurehttps://onlinelibrary.wiley.com/doi/abs/10.1002/smll.202104571Nassereddine, Abdallah; Wang, Qing; Loffreda, David; Ricolleau, Christian; Alloyeau, Damien; Louis, Catherine; Delannoy, Laurent; Nelayah, Jaysen; Guesmi, Hazar , Revealing Size Dependent Structural Transitions in Supported Gold Nanoparticles in Hydrogen at Atmospheric Pressure, 2021, Small, 10.1002/smll.202104571
    Operando Electron Microscopy Study of Cobalt-based Fischer-Tropsch Nanocatalystshttps://onlinelibrary.wiley.com/doi/abs/10.1002/cctc.202001074Dembélé, Kassiogé; Bahri, Mounib; Hirlimann, Charles; Moldovan, Simona; Berliet, Adrien; Maury, Sylvie; Gay, Anne-Sophie; Ersen, Ovidiu , Operando Electron Microscopy Study of Cobalt-based Fischer-Tropsch Nanocatalysts, 2021, ChemCatChem, 10.1002/cctc.202001074
    Dynamic restructuring of supported metal nanoparticles and its implications for structure insensitive catalysishttps://www.nature.com/articles/s41467-021-27474-3Vogt, Charlotte; Meirer, Florian; Monai, Matteo; Groeneveld, Esther; Ferri, Davide; van Santen, Rutger A.; Nachtegaal, Maarten; Unocic, Raymond R.; Frenkel, Anatoly I.; Weckhuysen, Bert M. , Dynamic restructuring of supported metal nanoparticles and its implications for structure insensitive catalysis, 2021, Nature Communications, 10.1038/s41467-021-27474-3
    Galvanic Transformation Dynamics in Heterostructured Nanoparticleshttps://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202105866Du, Jingshan S.; He, Kun; Xu, Yaobin; Wahl, Carolin B.; Xu, David D.; Dravid, Vinayak P.; Mirkin, Chad A. , Galvanic Transformation Dynamics in Heterostructured Nanoparticles, 2021, Advanced Functional Materials, 10.1002/adfm.202105866
    Role of Metal Vacancies in the Mechanism of Thermal Degradation of InGaN Quantum Wellshttps://pubs.acs.org/doi/abs/10.1021/acsami.0c21293Smalc-Koziorowska, Julita; Grzanka, Ewa; Lackowski, Artur; Hrytsak, Roman; Grabowski, Mikolaj; Grzanka, Szymon; Kret, Slawomir; Czernecki, Robert; Turksi, Henryk; Marona, Lucja; Markurt, Toni; Schulz, Tobias; Albrecht, Martin; Leszczynski, Mike , Role of Metal Vacancies in the Mechanism of Thermal Degradation of InGaN Quantum Wells, 2021, ACS Applied Materials & Interfaces, https://doi.org/10.1021/acsami.0c21293
    Practical Aspects of Performing Quantitive EELS Measurements of Gas Compositions in Closed-Cell Gas Reaction S/TEMhttps://www.cambridge.org/core/product/identifier/S1431927621003160/type/journal_articleUnocic, Kinga; Griffin, Michael; Schaidle, Joshua; Habas, Susan; Walden, Franklin; Unocic, Raymond; Allard, Lawrence , Practical Aspects of Performing Quantitive EELS Measurements of Gas Compositions in Closed-Cell Gas Reaction S/TEM, 2021, Microscopy and Microanalysis, 10.1017/S1431927621003160
    Understanding Cu-Alumina Interactions in Redox Conditions for Chemical Looping Combustion (CLC) Application – A Multi-scale Correlative Electron and X-Ray Microscopy Studyhttps://www.cambridge.org/core/product/identifier/S1431927621013283/type/journal_articleSharna, Sharmin; Lambert, Arnold; Rouchon, Virgile; Legens, Christèle; Taleb, Anne-Lise; Stanescu, Stefan; Chiche, David; Gay, Anne-Sophie; Ersen, Ovidiu , Understanding Cu-Alumina Interactions in Redox Conditions for Chemical Looping Combustion (CLC) Application – A Multi-scale Correlative Electron and X-Ray Microscopy Study, 2021, Microscopy and Microanalysis, 10.1017/S1431927621013283
    Probing the Formation of Lithium Metal in an Inert Atmosphere by Big Data-Driven In Situ Electron Microscopyhttps://pubs.acs.org/doi/10.1021/acsaem.1c01321Luo, Xin; Liu, Weiyan; Wang, Zeyu; Liang, Chao; He, Xuming; Yu, Yi , Probing the Formation of Lithium Metal in an Inert Atmosphere by Big Data-Driven In Situ Electron Microscopy, 2021, ACS Applied Energy Materials, 10.1021/acsaem.1c01321
    Is There Really a Size effect on the Surface Energy of Nanoparticles?https://hal.science/hal-03310351/documentAmara, Hakim; Nelayah, Jaysen; Creuze, Jérôme; Chmielewski, Adrian; Alloyeau, Damien; Ricolleau, Christian; Legrand, Bernard , Is There Really a Size effect on the Surface Energy of Nanoparticles?, 2021, Hall open archives, 10.13140/RG.2.2.26218.85446
    Stabilization of Metal Single Atoms on Carbon and TiO 2 Supports for CO 2 Hydrogenation: The Importance of Regulating Charge Transferhttps://onlinelibrary.wiley.com/doi/10.1002/admi.202001777Rivera-Cárcamo, Camila; Scarfiello, Canio; García, Ana B.; Tison, Yann; Martinez, Hervé; Baaziz, Walid; Ersen, Ovidiu; Le Berre, Carole; Serp, Philippe , Stabilization of Metal Single Atoms on Carbon and TiO 2 Supports for CO 2 Hydrogenation: The Importance of Regulating Charge Transfer, 2021, Advanced Materials Interfaces, 10.1002/admi.202001777
    Nanoscale oxidation behavior of carbon fibers revealed with in situ gas cell STEMhttps://linkinghub.elsevier.com/retrieve/pii/S1359646221001007Cochell, Thomas J.; Unocic, Raymond R.; Graña-Otero, José; Martin, Alexandre , Nanoscale oxidation behavior of carbon fibers revealed with in situ gas cell STEM, 2021, Scripta Materialia, 10.1016/j.scriptamat.2021.113820
    Anisotropic growth of Pt on Pd nanocube promotes direct synthesis of hydrogen peroxidehttps://linkinghub.elsevier.com/retrieve/pii/S0169433221011077Kim, Min-Cheol; Han, Geun-Ho; Xiao, Xiangyun; Song, Joseph; Hong, Jaeyoung; Jung, Euiyoung; Kim, Hong-Kyu; Ahn, Jae-Pyoung; Han, Sang Soo; Lee, Kwan-Young; Yu, Taekyung , Anisotropic growth of Pt on Pd nanocube promotes direct synthesis of hydrogen peroxide, 2021, Applied Surface Science, 10.1016/j.apsusc.2021.150031
    A multiscale in situ high temperature high resolution transmission electron microscopy study of ThO 2 sinteringhttp://xlink.rsc.org/?DOI=D1NR00956GPodor, R.; Trillaud, V.; Nkou Bouala, G. I.; Dacheux, N.; Ricolleau, C.; Clavier, N. , A multiscale in situ high temperature high resolution transmission electron microscopy study of ThO 2 sintering, 2021, Nanoscale, 10.1039/D1NR00956G
    In situ observation of the crystal structure transition of Pt–Sn intermetallic nanoparticles during deactivation and regenerationhttps://pubs.rsc.org/en/content/articlelanding/2021/cc/d1cc01181b#!Zhang, Ze-Qi; Pei, Yu-Chen; Xiao, Ming-Jun; Hu, Guowen; Huang, Zhi-Peng; Song, Tao; Wang, Qiang; Huang, Wen-Yu; Peng, Yong; Zhang, Hao-Li , In situ observation of the crystal structure transition of Pt–Sn intermetallic nanoparticles during deactivation and regeneration, 2021, Chemical Communications, 10.1039/D1CC01181B
    Template-free synthesis of a yolk–shell Co 3 O 4 /nitrogen-doped carbon microstructure for excellent lithium ion storagehttps://pubs.rsc.org/en/content/articlelanding/2021/ta/d1ta07221hXiao, Ming-Jun; Zhang, Hong; Ma, Bo; Zhang, Ze-Qi; Li, Xiang-Yang; Xiao, Qi; Wang, Qiang; Peng, Yong; Zhang, Hao-Li , Template-free synthesis of a yolk–shell Co 3 O 4 /nitrogen-doped carbon microstructure for excellent lithium ion storage, 2021, Journal of Materials Chemistry A, 10.1039/D1TA07221H
    Sintering of cobalt during FTS: Insights from industrial and model systemshttp://www.sciencedirect.com/science/article/pii/S0920586118309088Moodley, Denzil; Claeys, Michael; van Steen, Eric; van Helden, Pieter; Kistamurthy, Deshen; Weststrate, Kees-Jan; Niemantsverdriet, Hans; Saib, Abdool; Erasmus, Willem; van de Loosdrecht, Jan , Sintering of cobalt during FTS: Insights from industrial and model systems, 2020, Catalysis Today, 10.1016/j.cattod.2019.03.059
    Atomic Scale Insight into the Formation, Size, and Location of Platinum Nanoparticles Supported on ?-Aluminahttps://doi.org/10.1021/acscatal.0c00042Batista, Ana T. F.; Baaziz, Walid; Taleb, Anne-Lise; Chaniot, Johan; Moreaud, Maxime; Legens, Christèle; Aguilar-Tapia, Antonio; Proux, Olivier; Hazemann, Jean-Louis; Diehl, Fabrice; Chizallet, Céline; Gay, Anne-Sophie; Ersen, Ovidiu; Raybaud, Pascal , Atomic Scale Insight into the Formation, Size, and Location of Platinum Nanoparticles Supported on ?-Alumina, 2020, ACS Catalysis, 10.1021/acscatal.0c00042
    Nanoscale temperature measurement during temperature controlled in situ TEM using Al plasmon nanothermometryhttp://www.sciencedirect.com/science/article/pii/S0304399119300932Chmielewski, A.; Ricolleau, C.; Alloyeau, D.; Wang, G.; Nelayah, J. , Nanoscale temperature measurement during temperature controlled in situ TEM using Al plasmon nanothermometry, 2020, Ultramicroscopy, 10.1016/j.ultramic.2019.112881
    Direct Microscopic Proof of the Fermi Level Pinning Gas-Sensing Mechanism: The Case of Platinum-Loaded WO3https://doi.org/10.1021/acs.jpclett.9b03114Staerz, Anna; Bahri, Mounib; Geyik, Ugur; Brinkmann, Helena; Weimar, Udo; Ersen, Ovidiu; Barsan, Nicolae , Direct Microscopic Proof of the Fermi Level Pinning Gas-Sensing Mechanism: The Case of Platinum-Loaded WO3, 2020, The Journal of Physical Chemistry Letters, 10.1021/acs.jpclett.9b03114
    In-situ transmission electron microscopy investigation of the influence of hydrogen on the oxidation mechanisms of fine grained magnesiumhttp://www.sciencedirect.com/science/article/pii/S0254058420303059Sauvage, X.; Moldovan, S.; Cuvilly, F.; Bahri, M.; Grosdidier, T. , In-situ transmission electron microscopy investigation of the influence of hydrogen on the oxidation mechanisms of fine grained magnesium, 2020, Materials Chemistry and Physics, 10.1016/j.matchemphys.2020.122928
    In Situ Oxidation Studies of High-Entropy Alloy Nanoparticleshttps://pubs.acs.org/doi/10.1021/acsnano.0c05250Song, Boao; Yang, Yong; Rabbani, Muztoba; Yang, Timothy T.; He, Kun; Hu, Xiaobing; Yuan, Yifei; Ghildiyal, Pankaj; Dravid, Vinayak P.; Zachariah, Michael R.; Saidi, Wissam A.; Liu, Yuzi; Shahbazian-Yassar, Reza , In Situ Oxidation Studies of High-Entropy Alloy Nanoparticles, 2020, ACS Nano, 10.1021/acsnano.0c05250
    Introducing and Controlling Water Vapor in Closed-Cell In Situ Electron Microscopy Gas Reactionshttps://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/abs/introducing-and-controlling-water-vapor-in-closedcell-in-situ-electron-microscopy-gas-reactions/51C2F813D9803452A7B556AB720FFDBAUnocic, Kinga A; Walden, Franklin S; Marthe, Nelson L; Datye, Abhaya K; Bigelow, Wilbur C; Allard, Lawrence F , Introducing and Controlling Water Vapor in Closed-Cell In Situ Electron Microscopy Gas Reactions, 2020, Microscopy and Microanalysis, https://doi.org/10.1017/S1431927620000185
    Quo Vadis Micro-Electro-Mechanical Systems for the Study of Heterogeneous Catalysts Inside the Electron Microscope?http://link.springer.com/10.1007/s11244-020-01398-6Boniface, Maxime; Plodinec, Milivoj; Schlögl, Robert; Lunkenbein, Thomas , Quo Vadis Micro-Electro-Mechanical Systems for the Study of Heterogeneous Catalysts Inside the Electron Microscope?, 2020, Topics in Catalysis, 10.1007/s11244-020-01398-6
    Aerosol synthesis of thermally stable porous noble metals and alloys by using bi-functional templateshttp://xlink.rsc.org/?DOI=C9MH01408JOdziomek, Mateusz; Bahri, Mounib; Boissiere, Cedric; Sanchez, Clement; Lassalle-Kaiser, Benedikt; Zitolo, Andrea; Ersen, Ovidiu; Nowak, Sophie; Tard, Cedric; Giraud, Marion; Faustini, Marco; Peron, Jennifer , Aerosol synthesis of thermally stable porous noble metals and alloys by using bi-functional templates, 2020, Materials Horizons, 10.1039/C9MH01408J
    Insight on thermal stability of magnetite magnetosomes: implications for the fossil record and biotechnologyhttp://www.nature.com/articles/s41598-020-63531-5Cypriano, Jefferson; Bahri, Mounib; Dembelé, Kassiogé; Baaziz, Walid; Leão, Pedro; Bazylinski, Dennis A.; Abreu, Fernanda; Ersen, Ovidiu; Farina, Marcos; Werckmann, Jacques , Insight on thermal stability of magnetite magnetosomes: implications for the fossil record and biotechnology, 2020, Scientific Reports, 10.1038/s41598-020-63531-5
    Mobility and versatility of the liquid bismuth promoter in the working iron catalysts for light olefin synthesis from syngashttp://xlink.rsc.org/?DOI=D0SC01600DGu, Bang; Peron, Deizi V.; Barrios, Alan J.; Bahri, Mounib; Ersen, Ovidiu; Vorokhta, Mykhailo; Šmíd, B?etislav; Banerjee, Dipanjan; Virginie, Mirella; Marceau, Eric; Wojcieszak, Robert; Ordomsky, Vitaly V.; Khodakov, Andrei Y. , Mobility and versatility of the liquid bismuth promoter in the working iron catalysts for light olefin synthesis from syngas, 2020, Chemical Science, 10.1039/D0SC01600D
    Oxidation-Induced Atom Diffusion and Surface Restructuring in Faceted Ternary Pt–Cu–Ni Nanoparticleshttps://doi.org/10.1021/acs.chemmater.8b05199Shen, Xiaochen; Dai, Sheng; Zhang, Shuyi; Lu, Zheng; Zhang, Changlin; Graham, George W.; Lei, Yu; Pan, Xiaoqing; Peng, Zhenmeng , Oxidation-Induced Atom Diffusion and Surface Restructuring in Faceted Ternary Pt–Cu–Ni Nanoparticles, 2019, Chemistry of Materials, 10.1021/acs.chemmater.8b05199
    Bimetallic Phosphide (Ni,Cu)2P Nanoparticles by Inward Phosphorus Migration and Outward Copper Migrationhttps://doi.org/10.1021/acs.chemmater.9b01505Nguyen, Anh-Minh; Bahri, Mounib; Dreyfuss, Sébastien; Moldovan, Simona; Miche, Antoine; Méthivier, Christophe; Ersen, Ovidiu; Mézailles, Nicolas; Carenco, Sophie , Bimetallic Phosphide (Ni,Cu)2P Nanoparticles by Inward Phosphorus Migration and Outward Copper Migration, 2019, Chemistry of Materials, 10.1021/acs.chemmater.9b01505
    Toward 3D imaging of corrosion at the nanoscale: Cross-sectional analysis of in-situ oxidized TEM sampleshttp://www.sciencedirect.com/science/article/pii/S0968432818302828Harlow, Wayne; Taheri, Mitra L. , Toward 3D imaging of corrosion at the nanoscale: Cross-sectional analysis of in-situ oxidized TEM samples, 2019, Micron, 10.1016/j.micron.2019.02.008
    Structural evolution of atomically dispersed Pt catalysts dictates reactivityhttps://www.nature.com/articles/s41563-019-0349-9DeRita, Leo; Resasco, Joaquin; Dai, Sheng; Boubnov, Alexey; Thang, Ho Viet; Hoffman, Adam S.; Ro, Insoo; Graham, George W.; Bare, Simon R.; Pacchioni, Gianfranco; Pan, Xiaoqing; Christopher, Phillip , Structural evolution of atomically dispersed Pt catalysts dictates reactivity, 2019, Nature Materials, 10.1038/s41563-019-0349-9
    Morphological and compositional changes of MFe2O4@Co3O4 (M = Ni, Zn) core-shell nanoparticles after mild reductionhttp://www.sciencedirect.com/science/article/pii/S1044580318328262Govender, Alisa; Olivier, Ezra J.; Carleschi, Emanuela; Prestat, Eric; Haigh, Sarah J.; van Rensburg, Hendrik; Doyle, Bryan P.; Barnard, Werner; Forbes, Roy P.; Neethling, Johannes H.; van Steen, Eric , Morphological and compositional changes of MFe2O4@Co3O4 (M = Ni, Zn) core-shell nanoparticles after mild reduction, 2019, Materials Characterization, 10.1016/j.matchar.2019.109806
    In situ Scanning Transmission Electron Microscopy with Atomic Resolution under Atmospheric Pressurehttps://www.cambridge.org/core/journals/microscopy-today/article/in-situ-scanning-transmission-electron-microscopy-with-atomic-resolution-under-atmospheric-pressure/55D8A0C1194DACD2E1D7685406CE2193Dai, Sheng; Zhang, Shuyi; Graham, George W.; Pan, Xiaoqing , In situ Scanning Transmission Electron Microscopy with Atomic Resolution under Atmospheric Pressure, 2019, Microscopy Today, 10.1017/S1551929519000439
    Motion of crystalline inclusions by interface diffusion in the proximity of free surfaceshttps://doi.org/10.1007/s11051-019-4658-3Bergamaschini, Roberto; Rosen, Brian A.; Montalenti, Francesco; Colin, Jérôme , Motion of crystalline inclusions by interface diffusion in the proximity of free surfaces, 2019, Journal of Nanoparticle Research, 10.1007/s11051-019-4658-3
    In situ characterization of kinetics and mass transport of PbSe nanowire growth via LS and VLS mechanismshttp://xlink.rsc.org/?DOI=C9NR01200ASong, Miao; Lee, Jaewon; Wang, Bin; Legg, Benjamin A.; Hu, Shenyang; Chun, Jaehun; Li, Dongsheng , In situ characterization of kinetics and mass transport of PbSe nanowire growth via LS and VLS mechanisms, 2019, Nanoscale, 10.1039/C9NR01200A
    Reshaping Dynamics of Gold Nanoparticles under H 2 and O 2 at Atmospheric Pressurehttps://pubs.acs.org/doi/10.1021/acsnano.8b08530Chmielewski, Adrian; Meng, Jun; Zhu, Beien; Gao, Yi; Guesmi, Hazar; Prunier, Hélène; Alloyeau, Damien; Wang, Guillaume; Louis, Catherine; Delannoy, Laurent; Afanasiev, Pavel; Ricolleau, Christian; Nelayah, Jaysen , Reshaping Dynamics of Gold Nanoparticles under H 2 and O 2 at Atmospheric Pressure, 2019, ACS Nano, 10.1021/acsnano.8b08530
    Thermal behavior of Pd@SiO2 nanostructures in various gas environments: a combined 3D and in situ TEM approachhttps://pubs.rsc.org/en/content/articlelanding/2018/nr/c8nr06951dBaaziz, Walid; Bahri, Mounib; Gay, Anne Sophie; Chaumonnot, Alexandra; Uzio, Denis; Valette, Sébastien; Hirlimann, Charles; Ersen, Ovidiu , Thermal behavior of Pd@SiO2 nanostructures in various gas environments: a combined 3D and in situ TEM approach, 2018, Nanoscale, 10.1039/C8NR06951D
    In situ Atmospheric Transmission Electron Microscopy of Catalytic Nanomaterialshttps://www.cambridge.org/core/journals/mrs-advances/article/in-situ-atmospheric-transmission-electron-microscopy-of-catalytic-nanomaterials/71F8D0135EF96CD595956DBD2422D116Dai, Sheng; Gao, Wenpei; Graham, George W.; Pan, Xiaoqing , In situ Atmospheric Transmission Electron Microscopy of Catalytic Nanomaterials, 2018, MRS Advances, 10.1557/adv.2018.435
    Direct Measurement of the Surface Energy of Bimetallic Nanoparticles: Evidence of Vegard's Rulelike Dependencehttps://link.aps.org/doi/10.1103/PhysRevLett.120.025901Chmielewski, Adrian; Nelayah, Jaysen; Amara, Hakim; Creuze, Jérôme; Alloyeau, Damien; Wang, Guillaume; Ricolleau, Christian , Direct Measurement of the Surface Energy of Bimetallic Nanoparticles: Evidence of Vegard's Rulelike Dependence, 2018, Physical Review Letters, 10.1103/PhysRevLett.120.025901
    In situ insight into the unconventional ruthenium catalyzed growth of carbon nanostructureshttps://pubs.rsc.org/en/content/articlelanding/2018/nr/c8nr01227jBahri, M.; Dembélé, K.; Sassoye, C.; Debecker, D. P.; Moldovan, S.; Gay, A. S.; Hirlimann, Ch; Sanchez, C.; Ersen, O. , In situ insight into the unconventional ruthenium catalyzed growth of carbon nanostructures, 2018, Nanoscale, 10.1039/C8NR01227J
    Thermally Introduced Bismuth Clustering in Ga(P,Bi) Layers under Group V Stabilised Conditions Investigated by Atomic Resolution In Situ (S)TEMhttps://www.nature.com/articles/s41598-018-27286-4Straubinger, R.; Widemann, M.; Belz, J.; Nattermann, L.; Beyer, A.; Volz, K. , Thermally Introduced Bismuth Clustering in Ga(P,Bi) Layers under Group V Stabilised Conditions Investigated by Atomic Resolution In Situ (S)TEM, 2018, Scientific Reports, 10.1038/s41598-018-27286-4
    Insight by In Situ Gas Electron Microscopy on the Thermal Behaviour and Surface Reactivity of Cobalt Nanoparticleshttps://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cctc.201800854Dembélé, Kassiogé; Bahri, Mounib; Melinte, Georgian; Hirlimann, Charles; Berliet, Adrien; Maury, Sylvie; Gay, Anne-Sophie; Ersen, Ovidiu , Insight by In Situ Gas Electron Microscopy on the Thermal Behaviour and Surface Reactivity of Cobalt Nanoparticles, 2018, ChemCatChem, 10.1002/cctc.201800854
    Reactivity and structural evolution of urchin-like Co nanostructures under controlled environmentshttps://onlinelibrary.wiley.com/doi/abs/10.1111/jmi.12656Dembélé, K.; Moldovan, S.; Hirlimann, Ch; Harmel, J.; Soulantica, K.; Serp, P.; Chaudret, B.; Gay, A.-S.; Maury, S.; Berliet, A.; Fecant, A.; Ersen, O. , Reactivity and structural evolution of urchin-like Co nanostructures under controlled environments, 2018, Journal of Microscopy, 10.1111/jmi.12656
    Analytical and in situ Applications Using Aberration Corrected Scanning Transmission Electron Microscopehttps://www.jstage.jst.go.jp/article/ejssnt/16/0/16_286/_articleOhnishi, Ichiro; Suzuki, Toshihiro; Miyatake, Kouji; Jimbo, Yu; Iwasawa, Yorinobu; Morita, Masaki; Sasaki, Takeo; Sawada, Hidetaka; Okunishi, Eiji , Analytical and in situ Applications Using Aberration Corrected Scanning Transmission Electron Microscope, 2018, e-Journal of Surface Science and Nanotechnology, 10.1380/ejssnt.2018.286
    Deconvolution of octahedral Pt3Ni nanoparticle growth pathway from in situ characterizationshttp://www.nature.com/articles/s41467-018-06900-zShen, Xiaochen; Zhang, Changlin; Zhang, Shuyi; Dai, Sheng; Zhang, Guanghui; Ge, Mingyuan; Pan, Yanbo; Sharkey, Stephen M.; Graham, George W.; Hunt, Adrian; Waluyo, Iradwikanari; Miller, Jeffrey T.; Pan, Xiaoqing; Peng, Zhenmeng , Deconvolution of octahedral Pt3Ni nanoparticle growth pathway from in situ characterizations, 2018, Nature Communications, 10.1038/s41467-018-06900-z
    Combining In-Situ Transmission Electron Microscopy and Infrared Spectroscopy for Understanding Dynamic and Atomic-Scale Features of Supported Metal Catalystshttps://pubs.acs.org/doi/10.1021/acs.jpcc.8b03959Resasco, Joaquin; Dai, Sheng; Graham, George; Pan, Xiaoqing; Christopher, Phillip , Combining In-Situ Transmission Electron Microscopy and Infrared Spectroscopy for Understanding Dynamic and Atomic-Scale Features of Supported Metal Catalysts, 2018, The Journal of Physical Chemistry C, 10.1021/acs.jpcc.8b03959
    Catalytic Nanopatterning of Few-Layer Graphenehttps://hal.archives-ouvertes.fr/hal-02182887Melinte, Georgian; Moldovan, Simona; Hirlimann, Charles; Baaziz, Walid; Bégin-Colin, Sylvie; Pham-Huu, Cuong; Ersen, Ovidiu , Catalytic Nanopatterning of Few-Layer Graphene, 2017, ACS Catalysis, 10.1021/acscatal.7b01777
    In Situ Solid–Gas Reactivity of Nanoscaled Metal Borides from Molten Salt Synthesishttps://doi.org/10.1021/acs.inorgchem.7b01279Gouget, Guillaume; Debecker, Damien P.; Kim, Ara; Olivieri, Giorgia; Gallet, Jean-Jacques; Bournel, Fabrice; Thomas, Cyril; Ersen, Ovidiu; Moldovan, Simona; Sanchez, Clément; Carenco, Sophie; Portehault, David , In Situ Solid–Gas Reactivity of Nanoscaled Metal Borides from Molten Salt Synthesis, 2017, Inorganic Chemistry, 10.1021/acs.inorgchem.7b01279
    Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalystshttps://www.nature.com/articles/nchem.2607Matsubu, John C.; Zhang, Shuyi; DeRita, Leo; Marinkovic, Nebojsa S.; Chen, Jingguang G.; Graham, George W.; Pan, Xiaoqing; Christopher, Phillip , Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts, 2017, Nature Chemistry, 10.1038/nchem.2607
    Revealing Surface Elemental Composition and Dynamic Processes Involved in Facet-Dependent Oxidation of Pt3Co Nanoparticles via in Situ Transmission Electron Microscopyhttps://doi.org/10.1021/acs.nanolett.7b01325Dai, Sheng; Hou, Yusheng; Onoue, Masatoshi; Zhang, Shuyi; Gao, Wenpei; Yan, Xingxu; Graham, George W.; Wu, Ruqian; Pan, Xiaoqing , Revealing Surface Elemental Composition and Dynamic Processes Involved in Facet-Dependent Oxidation of Pt3Co Nanoparticles via in Situ Transmission Electron Microscopy, 2017, Nano Letters, 10.1021/acs.nanolett.7b01325
    Platinum-Based Nanowires as Active Catalysts toward Oxygen Reduction Reaction: In Situ Observation of Surface-Diffusion-Assisted, Solid-State Oriented Attachmenthttps://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201703460Ma, Yanling; Gao, Wenpei; Shan, Hao; Chen, Wenlong; Shang, Wen; Tao, Peng; Song, Chengyi; Addiego, Chris; Deng, Tao; Pan, Xiaoqing; Wu, Jianbo , Platinum-Based Nanowires as Active Catalysts toward Oxygen Reduction Reaction: In Situ Observation of Surface-Diffusion-Assisted, Solid-State Oriented Attachment, 2017, Advanced Materials, 10.1002/adma.201703460
    Quantitative and Atomic-Scale View of CO-Induced Pt Nanoparticle Surface Reconstruction at Saturation Coverage via DFT Calculations Coupled with in Situ TEM and IRhttps://doi.org/10.1021/jacs.7b01081Avanesian, Talin; Dai, Sheng; Kale, Matthew J.; Graham, George W.; Pan, Xiaoqing; Christopher, Phillip , Quantitative and Atomic-Scale View of CO-Induced Pt Nanoparticle Surface Reconstruction at Saturation Coverage via DFT Calculations Coupled with in Situ TEM and IR, 2017, Journal of the American Chemical Society, 10.1021/jacs.7b01081
    Integrated In Situ Characterization of a Molten Salt Catalyst Surface: Evidence of Sodium Peroxide and Hydroxyl Radical Formationhttps://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201704758Takanabe, Kazuhiro; Khan, Abdulaziz M.; Tang, Yu; Nguyen, Luan; Ziani, Ahmed; Jacobs, Benjamin W.; Elbaz, Ayman M.; Sarathy, S. Mani; Tao, Franklin (Feng) , Integrated In Situ Characterization of a Molten Salt Catalyst Surface: Evidence of Sodium Peroxide and Hydroxyl Radical Formation, 2017, Angewandte Chemie International Edition, 10.1002/anie.201704758
    In situ atomic-scale observation of oxygen-driven core-shell formation in Pt 3 Co nanoparticleshttps://www.nature.com/articles/s41467-017-00161-yDai, Sheng; You, Yuan; Zhang, Shuyi; Cai, Wei; Xu, Mingjie; Xie, Lin; Wu, Ruqian; Graham, George W.; Pan, Xiaoqing , In situ atomic-scale observation of oxygen-driven core-shell formation in Pt 3 Co nanoparticles, 2017, Nature Communications, 10.1038/s41467-017-00161-y
    High-temperature electron microscopy study of ThO2 microspheres sinteringhttp://www.sciencedirect.com/science/article/pii/S0955221916304630Nkou Bouala, G. I.; Clavier, N.; Léchelle, J.; Monnier, J.; Ricolleau, Ch.; Dacheux, N.; Podor, R. , High-temperature electron microscopy study of ThO2 microspheres sintering, 2017, Journal of the European Ceramic Society, 10.1016/j.jeurceramsoc.2016.08.029
    In Situ Atomic-Scale Observation of the Two-Dimensional Co(OH)2 Transition at Atmospheric Pressurehttps://doi.org/10.1021/acs.chemmater.7b01291Shen, Xiaochen; Dai, Sheng; Zhang, Changlin; Zhang, Shuyi; Sharkey, Stephen M.; Graham, George W.; Pan, Xiaoqing; Peng, Zhenmeng , In Situ Atomic-Scale Observation of the Two-Dimensional Co(OH)2 Transition at Atmospheric Pressure, 2017, Chemistry of Materials, 10.1021/acs.chemmater.7b01291
    In Situ Industrial Bimetallic Catalyst Characterization using Scanning Transmission Electron Microscopy and X-ray Absorption Spectroscopy at One Atmosphere and Elevated Temperaturehttps://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cphc.201700425Prestat, Eric; Kulzick, Matthew A.; Dietrich, Paul J.; Smith, Mr Matthew; Tien, Mr Eu-Pin; Burke, M. Grace; Haigh, Sarah J.; Zaluzec, Nestor J. , In Situ Industrial Bimetallic Catalyst Characterization using Scanning Transmission Electron Microscopy and X-ray Absorption Spectroscopy at One Atmosphere and Elevated Temperature, 2017, Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry, 10.1002/cphc.201700425
    In Situ Thermal Annealing Transmission Electron Microscopy (TEM) Investigation of III/V Semiconductor Heterostructures Using a Setup for Safe Usage of Toxic and Pyrophoric Gaseshttps://academic.oup.com/mam/article-abstract/23/4/751/6896748?redirectedFrom=fulltextStraubinger, Rainer; Beyer, Andreas; Ochs, Thomas; Stolz, Wolfgang; Volz, Kerstin , In Situ Thermal Annealing Transmission Electron Microscopy (TEM) Investigation of III/V Semiconductor Heterostructures Using a Setup for Safe Usage of Toxic and Pyrophoric Gases, 2017, Microscopy and Microanalysis, 10.1017/S1431927617012351
    Role of 2D and 3D defects on the reduction of LaNiO 3 nanoparticles for catalysishttps://www.nature.com/articles/s41598-017-10703-5Singh, Sarika; Prestat, Eric; Huang, Liang-Feng; Rondinelli, James M.; Haigh, Sarah J.; Rosen, Brian A. , Role of 2D and 3D defects on the reduction of LaNiO 3 nanoparticles for catalysis, 2017, Scientific Reports, 10.1038/s41598-017-10703-5
    Layer-by-Layer Degradation of Methylammonium Lead Tri-iodide Perovskite Microplateshttp://www.sciencedirect.com/science/article/pii/S2542435117300302Fan, Zheng; Xiao, Hai; Wang, Yiliu; Zhao, Zipeng; Lin, Zhaoyang; Cheng, Hung-Chieh; Lee, Sung-Joon; Wang, Gongming; Feng, Ziying; Goddard, William A.; Huang, Yu; Duan, Xiangfeng , Layer-by-Layer Degradation of Methylammonium Lead Tri-iodide Perovskite Microplates, 2017, Joule, 10.1016/j.joule.2017.08.005
    The application of in situ analytical transmission electron microscopy to the study of preferential intergranular oxidation in Alloy 600http://www.sciencedirect.com/science/article/pii/S0304399116303345Burke, M. G.; Bertali, G.; Prestat, E.; Scenini, F.; Haigh, S. J. , The application of in situ analytical transmission electron microscopy to the study of preferential intergranular oxidation in Alloy 600, 2017, Ultramicroscopy, 10.1016/j.ultramic.2016.11.014
    NiAl Oxidation Reaction Processes Studied In Situ Using MEMS-Based Closed-Cell Gas Reaction Transmission Electron Microscopyhttps://link.springer.com/article/10.1007/s11085-016-9676-2Unocic, Kinga A.; Shin, Dongwon; Unocic, Raymond R.; Allard, Lawrence F. , NiAl Oxidation Reaction Processes Studied In Situ Using MEMS-Based Closed-Cell Gas Reaction Transmission Electron Microscopy, 2017, Oxidation of Metals, 10.1007/s11085-016-9676-2
    An in situ and ex situ TEM study into the oxidation of titanium (IV) sulphidehttps://www.nature.com/articles/s41699-017-0024-4Long, Edmund; O’Brien, Sean; Lewis, Edward A.; Prestat, Eric; Downing, Clive; Cucinotta, Clotilde S.; Sanvito, Stefano; Haigh, Sarah J.; Nicolosi, Valeria , An in situ and ex situ TEM study into the oxidation of titanium (IV) sulphide, 2017, 2D Materials and Applications, 10.1038/s41699-017-0024-4
    In Situ Observation of Rh-CaTiO3 Catalysts during Reduction and Oxidation Treatments by Transmission Electron Microscopyhttps://doi.org/10.1021/acscatal.6b03604Dai, Sheng; Zhang, Shuyi; Katz, Michael B.; Graham, George W.; Pan, Xiaoqing , In Situ Observation of Rh-CaTiO3 Catalysts during Reduction and Oxidation Treatments by Transmission Electron Microscopy, 2017, ACS Catalysis, 10.1021/acscatal.6b03604
    Multislice simulations for in-situ HRTEM studies of nanostructured magnesium hydride at ambient hydrogen pressurehttp://www.sciencedirect.com/science/article/pii/S0304399117300529Surrey, Alexander; Schultz, Ludwig; Rellinghaus, Bernd , Multislice simulations for in-situ HRTEM studies of nanostructured magnesium hydride at ambient hydrogen pressure, 2017, Ultramicroscopy, 10.1016/j.ultramic.2017.01.017
    Reversible Transformation of Pt Nanoparticles into Single Atoms inside High-Silica Chabazite Zeolitehttps://doi.org/10.1021/jacs.6b10169Moliner, Manuel; Gabay, Jadeene E.; Kliewer, Chris E.; Carr, Robert T.; Guzman, Javier; Casty, Gary L.; Serna, Pedro; Corma, Avelino , Reversible Transformation of Pt Nanoparticles into Single Atoms inside High-Silica Chabazite Zeolite, 2016, Journal of the American Chemical Society, 10.1021/jacs.6b10169
    Correlation of morphology with catalytic performance of CrOx/Ce0.2Zr0.8O2 catalysts for NO oxidation via in-situ STEMhttp://www.sciencedirect.com/science/article/pii/S1385894715016666Cai, Wei; Zhong, Qin; Yu, Yang; Dai, Sheng , Correlation of morphology with catalytic performance of CrOx/Ce0.2Zr0.8O2 catalysts for NO oxidation via in-situ STEM, 2016, Chemical Engineering Journal, 10.1016/j.cej.2015.12.009
    Revealing particle growth mechanisms by combining high-surface-area catalysts made with monodisperse particles and electron microscopy conducted at atmospheric pressurehttp://www.sciencedirect.com/science/article/pii/S002195171600083XZhang, Shuyi; Cargnello, Matteo; Cai, Wei; Murray, Christopher B.; Graham, George W.; Pan, Xiaoqing , Revealing particle growth mechanisms by combining high-surface-area catalysts made with monodisperse particles and electron microscopy conducted at atmospheric pressure, 2016, Journal of Catalysis, 10.1016/j.jcat.2016.02.020
    Dynamical Observation and Detailed Description of Catalysts under Strong Metal–Support Interactionhttps://doi.org/10.1021/acs.nanolett.6b01769Zhang, Shuyi; Plessow, Philipp N.; Willis, Joshua J.; Dai, Sheng; Xu, Mingjie; Graham, George W.; Cargnello, Matteo; Abild-Pedersen, Frank; Pan, Xiaoqing , Dynamical Observation and Detailed Description of Catalysts under Strong Metal–Support Interaction, 2016, Nano Letters, 10.1021/acs.nanolett.6b01769
    Determination of the initial oxidation behavior of Zircaloy-4 by in-situ TEMhttp://www.sciencedirect.com/science/article/pii/S0022311516300824Harlow, Wayne; Ghassemi, Hessam; Taheri, Mitra L. , Determination of the initial oxidation behavior of Zircaloy-4 by in-situ TEM, 2016, Journal of Nuclear Materials, 10.1016/j.jnucmat.2016.03.009
    Defects do Catalysis: CO Monolayer Oxidation and Oxygen Reduction Reaction on Hollow PtNi/C Nanoparticleshttps://doi.org/10.1021/acscatal.6b01106Dubau, Laetitia; Nelayah, Jaysen; Moldovan, Simona; Ersen, Ovidiu; Bordet, Pierre; Drnec, Jakub; Asset, Tristan; Chattot, Raphaël; Maillard, Frédéric , Defects do Catalysis: CO Monolayer Oxidation and Oxygen Reduction Reaction on Hollow PtNi/C Nanoparticles, 2016, ACS Catalysis, 10.1021/acscatal.6b01106
    Preparation and Loading Process of Single Crystalline Samples into a Gas Environmental Cell Holder for In Situ Atomic Resolution Scanning Transmission Electron Microscopic Observationhttps://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/abs/preparation-and-loading-process-of-single-crystalline-samples-into-a-gas-environmental-cell-holder-for-in-situ-atomic-resolution-scanning-transmission-electron-microscopic-observation/C4A0371B31BC03D26CB7751820052D44Straubinger, Rainer; Beyer, Andreas; Volz, Kerstin , Preparation and Loading Process of Single Crystalline Samples into a Gas Environmental Cell Holder for In Situ Atomic Resolution Scanning Transmission Electron Microscopic Observation, 2016, Microscopy and Microanalysis, 10.1017/S1431927616000593
    Sample Preparation Methodologies for In Situ Liquid and Gaseous Cell Analytical Transmission Electron Microscopy of Electropolished Specimenshttps://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/abs/sample-preparation-methodologies-for-in-situ-liquid-and-gaseous-cell-analytical-transmission-electron-microscopy-of-electropolished-specimens/2EF60DDA6421035B91C31E0C13B2B902Zhong, Xiang Li; Schilling, Sibylle; Zaluzec, Nestor J.; Burke, M. Grace , Sample Preparation Methodologies for In Situ Liquid and Gaseous Cell Analytical Transmission Electron Microscopy of Electropolished Specimens, 2016, Microscopy and Microanalysis, 10.1017/S1431927616011855
    Diphosphine-Protected Au 22 Nanoclusters on Oxide Supports Are Active for Gas-Phase Catalysis without Ligand Removalhttps://pubs.acs.org/doi/10.1021/acs.nanolett.6b03221Wu, Zili; Hu, Guoxiang; Jiang, De-en; Mullins, David R.; Zhang, Qian-Fan; Allard, Lawrence F.; Wang, Lai-Sheng; Overbury, Steven H. , Diphosphine-Protected Au 22 Nanoclusters on Oxide Supports Are Active for Gas-Phase Catalysis without Ligand Removal, 2016, Nano Letters, 10.1021/acs.nanolett.6b03221
    Dynamic structural evolution of supported palladium–ceria core–shell catalysts revealed by in situ electron microscopyhttps://www.nature.com/articles/ncomms8778Zhang, Shuyi; Chen, Chen; Cargnello, Matteo; Fornasiero, Paolo; Gorte, Raymond J.; Graham, George W.; Pan, Xiaoqing , Dynamic structural evolution of supported palladium–ceria core–shell catalysts revealed by in situ electron microscopy, 2015, Nature Communications, 10.1038/ncomms8778
    Improved Thermal Stability and Methane-Oxidation Activity of Pd/Al2O3 Catalysts by Atomic Layer Deposition of ZrO2https://doi.org/10.1021/acscatal.5b01348Onn, Tzia Ming; Zhang, Shuyi; Arroyo-Ramirez, Lisandra; Chung, Yu-Chieh; Graham, George W.; Pan, Xiaoqing; Gorte, Raymond J. , Improved Thermal Stability and Methane-Oxidation Activity of Pd/Al2O3 Catalysts by Atomic Layer Deposition of ZrO2, 2015, ACS Catalysis, 10.1021/acscatal.5b01348
    In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2https://pubs.rsc.org/en/content/articlelanding/2014/ta/c4ta02583kGhassemi, H.; Harlow, W.; Mashtalir, O.; Beidaghi, M.; Lukatskaya, M. R.; Gogotsi, Y.; Taheri, M. L. , In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2, 2014, Journal of Materials Chemistry A, 10.1039/C4TA02583K
    Concurrent in situ ion irradiation transmission electron microscopehttps://www.mendeley.com/catalogue/4c6114d4-a216-3012-bb1f-49f5e04bd40d/Hattar, K.; Bufford, D. C.; Buller, D. L. , Concurrent in situ ion irradiation transmission electron microscope, 2014, Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 10.1016/j.nimb.2014.08.002
    Synthesis of mesoporous palladium with tunable porosity and demonstration of its thermal stability by in situ heating and environmental transmission electron microscopyhttps://pubs.rsc.org/en/content/articlelanding/2013/ta/c2ta00190jCappillino, Patrick J.; Hattar, Khalid M.; Clark, Blythe G.; Hartnett, Ryan J.; Stavila, Vitalie; Hekmaty, Michelle A.; Jacobs, Benjamin W.; Robinson, David B. , Synthesis of mesoporous palladium with tunable porosity and demonstration of its thermal stability by in situ heating and environmental transmission electron microscopy, 2012, Journal of Materials Chemistry A, 10.1039/C2TA00190J
    Novel MEMS-Based Gas-Cell/Heating Specimen Holder Provides Advanced Imaging Capabilities for In Situ Reaction Studieshttps://www.cambridge.org/core/product/identifier/S1431927612001249/type/journal_articleAllard, Lawrence F.; Overbury, Steven H.; Bigelow, Wilbur C.; Katz, Michael B.; Nackashi, David P.; Damiano, John , Novel MEMS-Based Gas-Cell/Heating Specimen Holder Provides Advanced Imaging Capabilities for In Situ Reaction Studies, 2012, Microscopy and Microanalysis, 10.1017/S1431927612001249
    A Novel Heating Technology for Ultra-High Resolution Imaging in Electron Microscopeshttps://www.cambridge.org/core/journals/microscopy-today/article/novel-heating-technology-for-ultrahigh-resolution-imaging-in-electron-microscopes/5949C29C44409BC9D1E8AEFDEF8C20B5Allard, Lawrence F.; Bigelow, Wilbur C.; Bradley, Steven A.; Liu, Jingyue(Jimmy) , A Novel Heating Technology for Ultra-High Resolution Imaging in Electron Microscopes, 2009, Microscopy Today, 10.1017/S1551929509000030

    Current User?

    Find our preparation guides, applications notes and other support material on our Success Community.

    Contact Us

    Request a price quote, find out more information, or get in touch with us with any questions.