AXON HFR

High Frame Rate Imaging

The HFR module offers a new approach to visualizing and organizing high-frame-rate data captured during high-speed dynamics. 

axon hfr

AXON HFR: FROM DATA OVERLOAD TO STRUCTURED SIMPLICITY

AXON HFR transforms your high-speed electron microscopy data captured using the Gatan IS-mode into a clear, navigable experience. By automatically enriching every frame with meaningful metadata, you can pinpoint critical events, reveal subtle trends, and streamline your analysis when using the AXON Studio module. Its timeline-based visualization tools bring order to even the most complex datasets, making it simple to find, filter, and share important insights. AXON HFR offers a powerful new workflow for studying high speed dynamics.

EXPLORE FASTER

Timeline Integration

Plot and filter data in innovative ways to quickly locate key information and effortlessly identify trends

SHARE EASIER

The "pack-and-share" function enables the sharing of only key segments of large datasets with colleagues

PUBLISH SOONER

Image stack and video export capabilities allow for the creation of data-rich visuals and videos, all in one platform, ready for publication

EXAMPLES USING THE AXON HFR MODULE

HIGH TEMPORAL RESOLUTION

Use Gatan’s IS-mode to optimize for high temporal resolution and insert those extra frames into the sleek AXON Studio timeline. All experimental metadata will be added to these additional frames, which are then compatible with all analysis and filtering tools within Studio, providing organization for these extra-large datasets. 

 

In this video: Gatan’s IS mode on a OneView camera was used to capture a burst of dynamics during a heating experiment with Fusion AX. The high frame rate data is indicated via the pink bar in Studio, where you can see several additional frames for every one frame captured by AXON (in orange and blue) 

AXON MACHINE-VISION PLATFORM LIBRARY

Published research using the AXON software solution. Use the button on the right to filter the publications.

JOURNAL ARTICLES

TitleURLCitation
A new paradigm in electron microscopy: Automated microstructure analysis utilizing a dynamic segmentation convolutional neutral networkhttps://linkinghub.elsevier.com/retrieve/pii/S2590049824000055Taller, Stephen; Scime, Luke; Austin, Ty , A new paradigm in electron microscopy: Automated microstructure analysis utilizing a dynamic segmentation convolutional neutral network, 2024, Materials Today Advances, 10.1016/j.mtadv.2024.100468
Ingenious Architecture and Coloration Generation in Enamel of Rodent Teethhttps://pubs.acs.org/doi/10.1021/acsnano.4c00578Srot, Vesna; Houari, Sophia; Kapun, Gregor; Bussmann, Birgit; Predel, Felicitas; Pokorny, Boštjan; Bužan, Elena; Salzberger, Ute; Fenk, Bernhard; Kelsch, Marion; Van Aken, Peter A. , Ingenious Architecture and Coloration Generation in Enamel of Rodent Teeth, 2024, ACS Nano, 10.1021/acsnano.4c00578
Key role of paracrystalline motifs on iridium oxide surfaces for acidic water oxidationhttps://www.nature.com/articles/s41929-024-01187-4Lu, Bingzhang; Wahl, Carolin; Dos Reis, Roberto; Edgington, Jane; Lu, Xiao Kun; Li, Ruihan; Sweers, Matthew E.; Ruggiero, Brianna; Gunasooriya, G. T. Kasun Kalhara; Dravid, Vinayak; Seitz, Linsey C. , Key role of paracrystalline motifs on iridium oxide surfaces for acidic water oxidation, 2024, Nature Catalysis, 10.1038/s41929-024-01187-4
Investigating Palladium Nanoparticle Morphogenesis on Zeolite for Passive NO x Adsorption via In Situ Transmission Electron Microscopy Analysis under Hydrothermal Conditionshttps://pubs.acs.org/doi/10.1021/acsanm.4c00429Pulinthanathu Sree, Sreeprasanth; Smet, Sam; Bellani, Claudio; Geerts-Claes, Hannelore; Straubinger, Rainer; Seo, Jin Won; Martens, Johan , Investigating Palladium Nanoparticle Morphogenesis on Zeolite for Passive NO x Adsorption via In Situ Transmission Electron Microscopy Analysis under Hydrothermal Conditions, 2024, ACS Applied Nano Materials, 10.1021/acsanm.4c00429
Liquid phase electron microscopy of bacterial ultrastructurehttps://onlinelibrary.wiley.com/doi/10.1002/smll.202402871Caffrey, Brian J.; Pedrazo-Tardajos, Adrián; Liberti, Emanuela; Gaunt, Ben; Kim, Judy S.; Kirkland, Angus I. , Liquid phase electron microscopy of bacterial ultrastructure, 2024, Small, 10.1002/smll.202402871
Formation mechanism of high-index faceted Pt-Bi alloy nanoparticles by evaporation-induced growth from metal saltshttps://www.nature.com/articles/s41467-023-39458-6Koo, Kunmo; Shen, Bo; Baik, Sung-Il; Mao, Zugang; Smeets, Paul J. M.; Cheuk, Ivan; He, Kun; Dos Reis, Roberto; Huang, Liliang; Ye, Zihao; Hu, Xiaobing; Mirkin, Chad A.; Dravid, Vinayak P. , Formation mechanism of high-index faceted Pt-Bi alloy nanoparticles by evaporation-induced growth from metal salts, 2023, Nature Communications, 10.1038/s41467-023-39458-6
Confinement Effects on the Structure of Entropy?Induced Supercrystalshttps://onlinelibrary.wiley.com/doi/10.1002/smll.202303380Goldmann, Claire; Chaâbani, Wajdi; Hotton, Claire; Impéror?Clerc, Marianne; Moncomble, Adrien; Constantin, Doru; Alloyeau, Damien; Hamon, Cyrille , Confinement Effects on the Structure of Entropy?Induced Supercrystals, 2023, Small, 10.1002/smll.202303380
A Machine-Vision Approach to Transmission Electron Microscopy Workflows, Results Analysis and Data Managementhttps://www.jove.com/t/65446/a-machine-vision-approach-to-transmission-electron-microscopyDukes, Madeline Dressel; Krans, Nynke Albertine; Marusak, Katherine; Walden, Stamp; Eldred, Tim; Franks, Alan; Larson, Ben; Guo, Yaofeng; Nackashi, David; Damiano, John , A Machine-Vision Approach to Transmission Electron Microscopy Workflows, Results Analysis and Data Management, 2023, Journal of Visualized Experiments, 10.3791/65446
Shedding Light on the Birth of Hybrid Perovskites: A Correlative Study by In Situ Electron Microscopy and Synchrotron-Based X-ray Scatteringhttps://pubs.acs.org/doi/10.1021/acs.chemmater.3c01167Sidhoum, Charles; Constantin, Doru; Ihiawakrim, Dris; Lenertz, Marc; Bizien, Thomas; Sanchez, Clément; Ersen, Ovidiu , Shedding Light on the Birth of Hybrid Perovskites: A Correlative Study by In Situ Electron Microscopy and Synchrotron-Based X-ray Scattering, 2023, Chemistry of Materials, 10.1021/acs.chemmater.3c01167
Challenges of Electron Correlation Microscopy on Amorphous Silicon and Amorphous Germaniumhttps://academic.oup.com/mam/article/29/5/1579/7252196Radi?, Dražen; Peterlechner, Martin; Spangenberg, Katharina; Posselt, Matthias; Bracht, Hartmut , Challenges of Electron Correlation Microscopy on Amorphous Silicon and Amorphous Germanium, 2023, Microscopy and Microanalysis, 10.1093/micmic/ozad090
Automated Grain Boundary Detection for Bright-Field Transmission Electron Microscopy Images via U-Nethttps://academic.oup.com/mam/advance-article/doi/10.1093/micmic/ozad115/7422794Patrick, Matthew J; Eckstein, James K; Lopez, Javier R; Toderas, Silvia; Asher, Sarah A; Whang, Sylvia I; Levine, Stacey; Rickman, Jeffrey M; Barmak, Katayun , Automated Grain Boundary Detection for Bright-Field Transmission Electron Microscopy Images via U-Net, 2023, Microscopy and Microanalysis, https://doi.org/10.1093/micmic/ozad115
In situ TEM studies of relaxation dynamics and crystal nucleation in thin film nanoglasseshttps://doi.org/10.1080/21663831.2023.2278597Voigt, Hendrik; Rigoni, Aaron; Boltynjuk, Evgeniy; Rösner, Harald; Hahn, Horst; Wilde, Gerhard , In situ TEM studies of relaxation dynamics and crystal nucleation in thin film nanoglasses, 2023, Materials Research Letters, 10.1080/21663831.2023.2278597
Correlating the dispersion of Li@Mn6 superstructure units with the oxygen activation in Li-rich layered cathodehttps://www.sciencedirect.com/science/article/pii/S240582972100578XLi, Yiwei; Xu, Shenyang; Zhao, Wenguang; Chen, Zhefeng; Chen, Zhaoxi; Li, Shunning; Hu, Jiangtao; Cao, Bo; Li, Jianyuan; Zheng, Shisheng; Chen, Ziwei; Zhang, Taolue; Zhang, Mingjian; Pan, Feng , Correlating the dispersion of Li@Mn6 superstructure units with the oxygen activation in Li-rich layered cathode, 2022, Energy Storage Materials, 10.1016/j.ensm.2021.12.003
Decoupled alpha and beta relaxation kinetics in a thermally cycled bulk Pd40Ni40P20 glasshttps://linkinghub.elsevier.com/retrieve/pii/S0925838822017777Stringe, Mark; Spangenberg, Katharina; da Silva Pinto, Manoel Wilker; Peterlechner, Martin; Wilde, Gerhard , Decoupled alpha and beta relaxation kinetics in a thermally cycled bulk Pd40Ni40P20 glass, 2022, Journal of Alloys and Compounds, 10.1016/j.jallcom.2022.165386
Real-time, On-Microscope Automated Quantification of Features in Microcopy Experiments Using Machine Learning and Edge Computinghttps://www.cambridge.org/core/product/identifier/S1431927622007929/type/journal_articleField, Kevin G.; Patki, Priyam; Sharaf, Nasir; Sun, Kai; Hawkins, Laura; Lynch, Matthew; Jacobs, Ryan; Morgan, Dane D.; He, Lingfeng; Field, Christopher R. , Real-time, On-Microscope Automated Quantification of Features in Microcopy Experiments Using Machine Learning and Edge Computing, 2022, Microscopy and Microanalysis, 10.1017/S1431927622007929
AXON Dose: A Solution for Measuring and Managing Electron Dose in the TEMhttps://www.cambridge.org/core/product/identifier/S1551929522000840/type/journal_articleDamiano, John; Walden, Stamp; Franks, Alan; Marusak, Kate; Larson, Ben; Coy, Mike; Nackashi, David , AXON Dose: A Solution for Measuring and Managing Electron Dose in the TEM, 2022, Microscopy Today, 10.1017/S1551929522000840
Directly Probing the Local Coordination, Charge State, and Stability of Single Atom Catalysts by Advanced Electron Microscopy: A Reviewhttps://onlinelibrary.wiley.com/doi/abs/10.1002/smll.202006482Tieu, Peter; Yan, Xingxu; Xu, Mingjie; Christopher, Phillip; Pan, Xiaoqing , Directly Probing the Local Coordination, Charge State, and Stability of Single Atom Catalysts by Advanced Electron Microscopy: A Review, 2021, Small, 10.1002/smll.202006482

Release Notes

Want to know what has changed in the newest version of AXON?

Contact Us

Request a price quote, find out more information, or get in touch with us with any questions.