AXON Dose

Dose Management

The Dose module ensures unparalleled reproducibility by automating the quantitative measurement and tracking of electron dose.

live heat maps

AXON DOSE: PRECISION DOSE MANAGEMENT FOR RELIABLE RESULTS

The electron beam can profoundly influence sample behavior, sometimes producing desired effects and sometimes introducing unwanted changes. Accurately understanding dose exposure across the sample at every stage of the experiment is essential for ensuring reliable results and reproducibility. AXON Dose is the first and only software of its kind that fully automates the calculation and recording of electron dose throughout the entire TEM workflow. By automating a traditionally labor-intensive and error-prone process, it establishes a new standard of reproducibility from one experiment to the next, and across multiple labs. 

INCREASE REPRODUCIBILITY

A unique external Faraday cup and power supply deliver reproducible, quantifiable measurements, ensuring consistent results across any TEM

SHARE EASIER

All dose measurements are automatically aligned and indexed into the metadata, ensuring they’re readily accessible to anyone reviewing the data in AXON Studio

INTERPRET FASTER

Intuitive visualization tools aid in understanding dose effects on sample behavior

EXAMPLES USING THE AXON DOSE MODULE

VISUALIZE DOSE

Colorful dose overlays introduce an entirely new way to visualize dose exposure. Electron dose is measured on a pixel-by-pixel basis and tracked throughout the entire experiment for both TEM and STEM modes, ensuring a detailed, continuous record. Colorized maps highlight actual exposure levels and indicate when approaching critical thresholds. 

 

In this video: The colorized dose overlay dynamically updates while going through the timeline, reflecting the increase in cumulative dose exposure over time. The colors shift toward red or pink as user-defined thresholds are approached, providing a clear visual warning.

IDENTIFY DOSE LIMITS

Tools like spot fading quickly pinpoint when and where the electron beam first contacts your sample, helping you understand the beam’s influence based on dose rate or cumulative dose. Once dose thresholds are identified, the software allows you to set warning indicators. Colorful dose overlays then provide clear alerts for approaching dose levels.

 

In this video: The live FFT is used to detect beam damage in a ZSM-5 zeolite sample from Zeolyst, which becomes amorphous when exposed to prolonged e-beam. Once the dose level where the ZSM-5 particle turns completely amorphous is identified, the dose threshold can be set accordingly. The colored maps will then adjust to help monitor and manage dose limits in future experiments.

A BIRDS-EYE VIEW

 

The dose navigation pane shows a low-magnification view of the stage and the same colorized dose maps show where the beam has been previously. Move to pristine areas with a simple double-click in the navigation pane to quickly begin a new experiment

 

In this video: the dose navigation pane (right) indicates the location of the most recent experiment with the same dose map overlay as shown on the image (left). A double click in the navigation pane moves the field of view to a pristine area while the previous location is still identifiable. 

AXON MACHINE-VISION PLATFORM LIBRARY

Published research using the AXON software solution. Use the button on the right to filter the publications.

JOURNAL ARTICLES

TitleURLCitation
A new paradigm in electron microscopy: Automated microstructure analysis utilizing a dynamic segmentation convolutional neutral networkhttps://linkinghub.elsevier.com/retrieve/pii/S2590049824000055Taller, Stephen; Scime, Luke; Austin, Ty , A new paradigm in electron microscopy: Automated microstructure analysis utilizing a dynamic segmentation convolutional neutral network, 2024, Materials Today Advances, 10.1016/j.mtadv.2024.100468
Ingenious Architecture and Coloration Generation in Enamel of Rodent Teethhttps://pubs.acs.org/doi/10.1021/acsnano.4c00578Srot, Vesna; Houari, Sophia; Kapun, Gregor; Bussmann, Birgit; Predel, Felicitas; Pokorny, Boštjan; Bužan, Elena; Salzberger, Ute; Fenk, Bernhard; Kelsch, Marion; Van Aken, Peter A. , Ingenious Architecture and Coloration Generation in Enamel of Rodent Teeth, 2024, ACS Nano, 10.1021/acsnano.4c00578
Key role of paracrystalline motifs on iridium oxide surfaces for acidic water oxidationhttps://www.nature.com/articles/s41929-024-01187-4Lu, Bingzhang; Wahl, Carolin; Dos Reis, Roberto; Edgington, Jane; Lu, Xiao Kun; Li, Ruihan; Sweers, Matthew E.; Ruggiero, Brianna; Gunasooriya, G. T. Kasun Kalhara; Dravid, Vinayak; Seitz, Linsey C. , Key role of paracrystalline motifs on iridium oxide surfaces for acidic water oxidation, 2024, Nature Catalysis, 10.1038/s41929-024-01187-4
Investigating Palladium Nanoparticle Morphogenesis on Zeolite for Passive NO x Adsorption via In Situ Transmission Electron Microscopy Analysis under Hydrothermal Conditionshttps://pubs.acs.org/doi/10.1021/acsanm.4c00429Pulinthanathu Sree, Sreeprasanth; Smet, Sam; Bellani, Claudio; Geerts-Claes, Hannelore; Straubinger, Rainer; Seo, Jin Won; Martens, Johan , Investigating Palladium Nanoparticle Morphogenesis on Zeolite for Passive NO x Adsorption via In Situ Transmission Electron Microscopy Analysis under Hydrothermal Conditions, 2024, ACS Applied Nano Materials, 10.1021/acsanm.4c00429
Liquid phase electron microscopy of bacterial ultrastructurehttps://onlinelibrary.wiley.com/doi/10.1002/smll.202402871Caffrey, Brian J.; Pedrazo-Tardajos, Adrián; Liberti, Emanuela; Gaunt, Ben; Kim, Judy S.; Kirkland, Angus I. , Liquid phase electron microscopy of bacterial ultrastructure, 2024, Small, 10.1002/smll.202402871
Formation mechanism of high-index faceted Pt-Bi alloy nanoparticles by evaporation-induced growth from metal saltshttps://www.nature.com/articles/s41467-023-39458-6Koo, Kunmo; Shen, Bo; Baik, Sung-Il; Mao, Zugang; Smeets, Paul J. M.; Cheuk, Ivan; He, Kun; Dos Reis, Roberto; Huang, Liliang; Ye, Zihao; Hu, Xiaobing; Mirkin, Chad A.; Dravid, Vinayak P. , Formation mechanism of high-index faceted Pt-Bi alloy nanoparticles by evaporation-induced growth from metal salts, 2023, Nature Communications, 10.1038/s41467-023-39458-6
Confinement Effects on the Structure of Entropy?Induced Supercrystalshttps://onlinelibrary.wiley.com/doi/10.1002/smll.202303380Goldmann, Claire; Chaâbani, Wajdi; Hotton, Claire; Impéror?Clerc, Marianne; Moncomble, Adrien; Constantin, Doru; Alloyeau, Damien; Hamon, Cyrille , Confinement Effects on the Structure of Entropy?Induced Supercrystals, 2023, Small, 10.1002/smll.202303380
A Machine-Vision Approach to Transmission Electron Microscopy Workflows, Results Analysis and Data Managementhttps://www.jove.com/t/65446/a-machine-vision-approach-to-transmission-electron-microscopyDukes, Madeline Dressel; Krans, Nynke Albertine; Marusak, Katherine; Walden, Stamp; Eldred, Tim; Franks, Alan; Larson, Ben; Guo, Yaofeng; Nackashi, David; Damiano, John , A Machine-Vision Approach to Transmission Electron Microscopy Workflows, Results Analysis and Data Management, 2023, Journal of Visualized Experiments, 10.3791/65446
Shedding Light on the Birth of Hybrid Perovskites: A Correlative Study by In Situ Electron Microscopy and Synchrotron-Based X-ray Scatteringhttps://pubs.acs.org/doi/10.1021/acs.chemmater.3c01167Sidhoum, Charles; Constantin, Doru; Ihiawakrim, Dris; Lenertz, Marc; Bizien, Thomas; Sanchez, Clément; Ersen, Ovidiu , Shedding Light on the Birth of Hybrid Perovskites: A Correlative Study by In Situ Electron Microscopy and Synchrotron-Based X-ray Scattering, 2023, Chemistry of Materials, 10.1021/acs.chemmater.3c01167
Challenges of Electron Correlation Microscopy on Amorphous Silicon and Amorphous Germaniumhttps://academic.oup.com/mam/article/29/5/1579/7252196Radi?, Dražen; Peterlechner, Martin; Spangenberg, Katharina; Posselt, Matthias; Bracht, Hartmut , Challenges of Electron Correlation Microscopy on Amorphous Silicon and Amorphous Germanium, 2023, Microscopy and Microanalysis, 10.1093/micmic/ozad090
Automated Grain Boundary Detection for Bright-Field Transmission Electron Microscopy Images via U-Nethttps://academic.oup.com/mam/advance-article/doi/10.1093/micmic/ozad115/7422794Patrick, Matthew J; Eckstein, James K; Lopez, Javier R; Toderas, Silvia; Asher, Sarah A; Whang, Sylvia I; Levine, Stacey; Rickman, Jeffrey M; Barmak, Katayun , Automated Grain Boundary Detection for Bright-Field Transmission Electron Microscopy Images via U-Net, 2023, Microscopy and Microanalysis, https://doi.org/10.1093/micmic/ozad115
In situ TEM studies of relaxation dynamics and crystal nucleation in thin film nanoglasseshttps://doi.org/10.1080/21663831.2023.2278597Voigt, Hendrik; Rigoni, Aaron; Boltynjuk, Evgeniy; Rösner, Harald; Hahn, Horst; Wilde, Gerhard , In situ TEM studies of relaxation dynamics and crystal nucleation in thin film nanoglasses, 2023, Materials Research Letters, 10.1080/21663831.2023.2278597
Correlating the dispersion of Li@Mn6 superstructure units with the oxygen activation in Li-rich layered cathodehttps://www.sciencedirect.com/science/article/pii/S240582972100578XLi, Yiwei; Xu, Shenyang; Zhao, Wenguang; Chen, Zhefeng; Chen, Zhaoxi; Li, Shunning; Hu, Jiangtao; Cao, Bo; Li, Jianyuan; Zheng, Shisheng; Chen, Ziwei; Zhang, Taolue; Zhang, Mingjian; Pan, Feng , Correlating the dispersion of Li@Mn6 superstructure units with the oxygen activation in Li-rich layered cathode, 2022, Energy Storage Materials, 10.1016/j.ensm.2021.12.003
Decoupled alpha and beta relaxation kinetics in a thermally cycled bulk Pd40Ni40P20 glasshttps://linkinghub.elsevier.com/retrieve/pii/S0925838822017777Stringe, Mark; Spangenberg, Katharina; da Silva Pinto, Manoel Wilker; Peterlechner, Martin; Wilde, Gerhard , Decoupled alpha and beta relaxation kinetics in a thermally cycled bulk Pd40Ni40P20 glass, 2022, Journal of Alloys and Compounds, 10.1016/j.jallcom.2022.165386
Real-time, On-Microscope Automated Quantification of Features in Microcopy Experiments Using Machine Learning and Edge Computinghttps://www.cambridge.org/core/product/identifier/S1431927622007929/type/journal_articleField, Kevin G.; Patki, Priyam; Sharaf, Nasir; Sun, Kai; Hawkins, Laura; Lynch, Matthew; Jacobs, Ryan; Morgan, Dane D.; He, Lingfeng; Field, Christopher R. , Real-time, On-Microscope Automated Quantification of Features in Microcopy Experiments Using Machine Learning and Edge Computing, 2022, Microscopy and Microanalysis, 10.1017/S1431927622007929
AXON Dose: A Solution for Measuring and Managing Electron Dose in the TEMhttps://www.cambridge.org/core/product/identifier/S1551929522000840/type/journal_articleDamiano, John; Walden, Stamp; Franks, Alan; Marusak, Kate; Larson, Ben; Coy, Mike; Nackashi, David , AXON Dose: A Solution for Measuring and Managing Electron Dose in the TEM, 2022, Microscopy Today, 10.1017/S1551929522000840
Directly Probing the Local Coordination, Charge State, and Stability of Single Atom Catalysts by Advanced Electron Microscopy: A Reviewhttps://onlinelibrary.wiley.com/doi/abs/10.1002/smll.202006482Tieu, Peter; Yan, Xingxu; Xu, Mingjie; Christopher, Phillip; Pan, Xiaoqing , Directly Probing the Local Coordination, Charge State, and Stability of Single Atom Catalysts by Advanced Electron Microscopy: A Review, 2021, Small, 10.1002/smll.202006482

Release Notes

Want to know what has changed in the newest version of AXON?

Contact Us

Request a price quote, find out more information, or get in touch with us with any questions.