Liquid EM Library

Research conducted using the Poseidon AX and Triton AX system.

Journal Articles

Use the table to search for specific papers and see how papers and authors are related to each other in the diagram above the table!

TitleURLCitation
Operando Heating and Cooling Electrochemical 4D-STEM Probing Nanoscale Dynamics at Solid–Liquid Interfaceshttps://doi.org/10.1021/jacs.5c05005Kim, Sungin; Briega-Martos, Valentin; Liu, Shikai; Je, Kwanghwi; Shi, Chuqiao; Stephens, Katherine Marusak; Zeltmann, Steven E.; Zhang, Zhijing; Guzman-Soriano, Rafael; Li, Wenqi; Jiang, Jiahong; Choi, Juhyung; Negash, Yafet J.; Walden, Franklin S. II; Marthe, Nelson L. Jr.; Wellborn, Patrick S.; Guo, Yaofeng; Damiano, John; Han, Yimo; Thiede, Erik H.; Yang, Yao , Operando Heating and Cooling Electrochemical 4D-STEM Probing Nanoscale Dynamics at Solid–Liquid Interfaces, 2025, Journal of the American Chemical Society, 10.1021/jacs.5c05005
In Situ Transmission Electron Microscopy of Electrocatalyst Materials: Proposed Workflows, Technical Advances, Challenges, and Lessons Learnedhttps://onlinelibrary.wiley.com/doi/10.1002/smtd.202400851Abdellah, Ahmed M.; Salem, Kholoud E.; DiCecco, Liza?Anastasia; Ismail, Fatma; Rakhsha, Amirhossein; Grandfield, Kathryn; Higgins, Drew , In Situ Transmission Electron Microscopy of Electrocatalyst Materials: Proposed Workflows, Technical Advances, Challenges, and Lessons Learned, 2025, Small Methods, 10.1002/smtd.202400851
aquaDenoising: AI-enhancement of in situ liquid phase STEM video for automated quantification of nanoparticles growthhttps://linkinghub.elsevier.com/retrieve/pii/S0304399125000208Moncomble, Adrien; Alloyeau, Damien; Moreaud, Maxime; Khelfa, Abdelali; Wang, Guillaume; Ortiz-Peña, Nathaly; Amara, Hakim; Gatti, Riccardo; Moreau, Romain; Ricolleau, Christian; Nelayah, Jaysen , aquaDenoising: AI-enhancement of in situ liquid phase STEM video for automated quantification of nanoparticles growth, 2025, Ultramicroscopy, 10.1016/j.ultramic.2025.114121
Designing TEM experiments with thin lamella all-solid-state cells in controlled atmosphere using electrochemical chipshttps://linkinghub.elsevier.com/retrieve/pii/S0968432825000289Naillou, Paul; Boulineau, Adrien; Oukassi, Sami; Azaïs, Philippe , Designing TEM experiments with thin lamella all-solid-state cells in controlled atmosphere using electrochemical chips, 2025, Micron, 10.1016/j.micron.2025.103810
Understanding Electron Beam-Induced Chemical Polymerization Processes of Small Organic Molecules Using Operando Liquid-Phase Transmission Electron Microscopyhttps://pubs.acs.org/doi/10.1021/acsnano.4c15470Yoon, Jun-Yeong; Park, Jongseong; Lee, Kihyun; Jafter, Orein F.; Jang, Myeongjin; Cheon, Jinwoo; Kim, Kwanpyo; Lungerich, Dominik , Understanding Electron Beam-Induced Chemical Polymerization Processes of Small Organic Molecules Using Operando Liquid-Phase Transmission Electron Microscopy, 2025, ACS Nano, 10.1021/acsnano.4c15470
Nanobeam-scanning X-ray Fluorescence Microscopy Reveals the Elemental Composition of Dense Intracellular Bodies in Biomineralizing Coccolithophoreshttp://pubs.rsc.org/en/Content/ArticleLanding/2025/FD/D5FD00021AChevrier, Daniel; Gautam, Shristy; Scheffel, André , Nanobeam-scanning X-ray Fluorescence Microscopy Reveals the Elemental Composition of Dense Intracellular Bodies in Biomineralizing Coccolithophores, 2025, Faraday Discussions, 10.1039/D5FD00021A
Chimie-Douce Route to Tungsten Oxide Hydrate: Comprehensive Insight into the Formation Mechanism by Liquid-Phase Electron Microscopy Combined with Complementary Techniqueshttps://pubs.acs.org/doi/10.1021/acs.chemmater.4c03003Sidhoum, Charles; Ihiawakrim, Dris; Haouas, Mohamed; Constantin, Doru; Schosseler, François; Odziomek, Mateusz; Vertchik, Kahina; Leforestier, Amélie; Sanchez, Clément; Ersen, Ovidiu , Chimie-Douce Route to Tungsten Oxide Hydrate: Comprehensive Insight into the Formation Mechanism by Liquid-Phase Electron Microscopy Combined with Complementary Techniques, 2025, Chemistry of Materials, 10.1021/acs.chemmater.4c03003
Unveiling the reconstruction of copper bimetallic catalysts during CO2 electroreductionhttps://www.nature.com/articles/s41929-025-01368-9Kim, Intae; Lee, Gi-Baek; Kim, Sungin; Jung, Hyun Dong; Kim, Ji-Yong; Lee, Taemin; Choi, Hyesung; Jo, Jaeyeon; Kang, Geosan; Oh, Sang-Ho; Kwon, Woosuck; Hong, Deokgi; Kim, Hyoung Gyun; Lee, Yujin; Kim, Unggi; Kim, Hyeontae; Kim, Miyoung; Back, Seoin; Park, Jungwon; Joo, Young-Chang; Nam, Dae-Hyun , Unveiling the reconstruction of copper bimetallic catalysts during CO2 electroreduction, 2025, Nature Catalysis, 10.1038/s41929-025-01368-9
Operando probing dynamic migration of copper carbonyl during electrocatalytic CO2 reductionhttps://www.nature.com/articles/s41929-025-01359-wYang, Yao; Feijóo, Julian; Figueras-Valls, Marc; Chen, Chubai; Shi, Chuqiao; Fonseca Guzman, Maria V.; Murhabazi Maombi, Yves; Liu, Shikai; Jain, Pulkit; Briega-Martos, Valentín; Peng, Zhengxing; Shan, Yu; Lee, Geonhui; Rebarchik, Michael; Xu, Lang; Pollock, Christopher J.; Jin, Jianbo; Soland, Nathan E.; Wang, Cheng; Salmeron, Miquel B.; Chen, Zhu; Han, Yimo; Mavrikakis, Manos; Yang, Peidong , Operando probing dynamic migration of copper carbonyl during electrocatalytic CO2 reduction, 2025, Nature Catalysis, 10.1038/s41929-025-01359-w
Nanoscale phonon dynamics in self-assembled nanoparticle latticeshttps://www.nature.com/articles/s41563-025-02253-3Qian, Chang; Stanifer, Ethan; Ma, Zhan; Yao, Lehan; Luo, Binbin; Liu, Chang; Li, Jiahui; Pan, Puquan; Pan, Wenxiao; Mao, Xiaoming; Chen, Qian , Nanoscale phonon dynamics in self-assembled nanoparticle lattices, 2025, Nature Materials, 10.1038/s41563-025-02253-3
Twin Boundary-Induced Corrosion Kinetics of Icosahedral Core–Shell Structure Unveiled by In Situ Liquid Transmission Electron Microscopyhttps://pubs.acs.org/doi/10.1021/acs.jpcc.5c00932Wu, Chenhao; Hu, Hao; Fang, Zhen; Shan, Hao; Tian, Jiakang; Yao, Zhenpeng; Gao, Wenpei; Shang, Wen; Deng, Tao; Wu, Jianbo , Twin Boundary-Induced Corrosion Kinetics of Icosahedral Core–Shell Structure Unveiled by In Situ Liquid Transmission Electron Microscopy, 2025, The Journal of Physical Chemistry C, 10.1021/acs.jpcc.5c00932
Bio-inspired multifunctional disruptors of calcium oxalate crystallizationhttps://www.nature.com/articles/s41467-025-60320-4Kim, Doyoung; Chauhan, Vraj P.; Alamani, Bryan G.; Fisher, Saxton D.; Yang, Zhi; Jones, Matthew R.; Terlier, Tanguy; Vekilov, Peter G.; Rimer, Jeffrey D. , Bio-inspired multifunctional disruptors of calcium oxalate crystallization, 2025, Nature Communications, 10.1038/s41467-025-60320-4
Enhanced Solid Electrolyte Interphase Layer in Li-Ion Batteries with Fluoroethylene Carbonate Additives Evidenced by Liquid-Phase Transmission Electron Microscopyhttps://pubs.acs.org/doi/10.1021/acsnano.5c01460Dachraoui, Walid; Kühnel, Ruben-Simon; Kummer, Nico; Battaglia, Corsin; Erni, Rolf , Enhanced Solid Electrolyte Interphase Layer in Li-Ion Batteries with Fluoroethylene Carbonate Additives Evidenced by Liquid-Phase Transmission Electron Microscopy, 2025, ACS Nano, 10.1021/acsnano.5c01460
Triton AX: Liquid Heating and Cooling Electrochemical Cell for ?In Situ? (S)TEMhttps://doi.org/10.1093/mictod/qaaf028Stephens, Katherine M; King, Zayna T; Wellborn, Patrick S; Dukes, Madeline D; Walden, Franklin S; Marthe, Nelson L; Barnes, Jake; McConnell, Jennifer; Damiano, John , Triton AX: Liquid Heating and Cooling Electrochemical Cell for ?In Situ? (S)TEM, 2025, Microscopy Today, https://doi.org/10.1093/mictod/qaaf028
Hierarchically porous carnosine-Zn microsphereshttps://linkinghub.elsevier.com/retrieve/pii/S2590238525001511Chen, Yu; Zilberzwige-Tal, Shai; Rosenmann, Nathan D.; Oktawiec, Julia; Nensel, Ashley K.; Ma, Qing; Lichtenstein, Sasha; Gazit, Ehud; Gianneschi, Nathan C. , Hierarchically porous carnosine-Zn microspheres, 2025, Matter, 10.1016/j.matt.2025.102108
Self-supervised machine learning framework for high-throughput electron microscopyhttps://www.science.org/doi/10.1126/sciadv.ads5552Kim, Joodeok; Rhee, Jinho; Kang, Sungsu; Jung, Mingyu; Kim, Jihoon; Jeon, Miji; Park, Junsun; Ham, Jimin; Kim, Byung Hyo; Lee, Won Chul; Roh, Soung-Hun; Park, Jungwon , Self-supervised machine learning framework for high-throughput electron microscopy, 2025, Science Advances, 10.1126/sciadv.ads5552
Synergistic modulation of electronic structure in high entropy perovskite oxide for enhanced bifuntional oxygen evolution/reduction reactions and its mechanistic insights via in-situ analyses and density functional theory calculationhttps://linkinghub.elsevier.com/retrieve/pii/S1385894725025537Nguyen, Thi Xuyen; Lee, Chih-Heng; Sun, Jun-Hong; Peng, Chun-Kuo; Chu, Wen-Hui; Pourzolfaghar, Hamed; Lin, Yu-Ru; Ghufron, Muhammad; Li, Yuan-Yao; Chang, Yu-Hao; Lin, Yan-Gu; Chen, Hsin-Yi Tiffany; Tseng, Shih-Wen; Su, Chia-Ying; Ting, Jyh-Ming , Synergistic modulation of electronic structure in high entropy perovskite oxide for enhanced bifuntional oxygen evolution/reduction reactions and its mechanistic insights via in-situ analyses and density functional theory calculation, 2025, Chemical Engineering Journal, 10.1016/j.cej.2025.161731
Learning the diffusion of nanoparticles in liquid phase TEM via physics-informed generative AIhttps://www.nature.com/articles/s41467-025-61632-1Shabeeb, Zain; Goyal, Naisargi; Attah Nantogmah, Pagnaa; Jamali, Vida , Learning the diffusion of nanoparticles in liquid phase TEM via physics-informed generative AI, 2025, Nature Communications, 10.1038/s41467-025-61632-1
Learning the diffusion of nanoparticles in liquid phase TEM via physics-informed generative AIhttps://www.nature.com/articles/s41467-025-61632-1Shabeeb, Zain; Goyal, Naisargi; Attah Nantogmah, Pagnaa; Jamali, Vida , Learning the diffusion of nanoparticles in liquid phase TEM via physics-informed generative AI, 2025, Nature Communications, 10.1038/s41467-025-61632-1
Insight into the Internal Structure of High-Performance Multicore Magnetic Nanoparticles Used in Cancer Thermotherapyhttps://pubs.acs.org/doi/10.1021/acsmaterialsau.4c00021Roussel, Tom; Ferry, Daniel; Kosta, Artemis; Miele, Dalila; Sandri, Giuseppina; Tansi, Felista L.; Steiniger, Frank; Southern, Paul; Pankhurst, Quentin A.; Peng, Ling; Giorgio, Suzanne , Insight into the Internal Structure of High-Performance Multicore Magnetic Nanoparticles Used in Cancer Thermotherapy, 2024, ACS Materials Au, 10.1021/acsmaterialsau.4c00021
Impact of palladium/palladium hydride conversion on electrochemical CO2 reduction via in-situ transmission electron microscopy and diffractionhttps://www.nature.com/articles/s41467-024-45096-3Abdellah, Ahmed M.; Ismail, Fatma; Siig, Oliver W.; Yang, Jie; Andrei, Carmen M.; DiCecco, Liza-Anastasia; Rakhsha, Amirhossein; Salem, Kholoud E.; Grandfield, Kathryn; Bassim, Nabil; Black, Robert; Kastlunger, Georg; Soleymani, Leyla; Higgins, Drew , Impact of palladium/palladium hydride conversion on electrochemical CO2 reduction via in-situ transmission electron microscopy and diffraction, 2024, Nature Communications, 10.1038/s41467-024-45096-3
A magnetically powered nanomachine with a DNA clutchhttps://www.nature.com/articles/s41565-023-01599-6Lin, Mouhong; Lee, Jung-uk; Kim, Youngjoo; Kim, Gooreum; Jung, Yunmin; Jo, Ala; Park, Mansoo; Lee, Sol; Lah, Jungsu David; Park, Jongseong; Noh, Kunwoo; Lee, Jae-Hyun; Kwak, Minsuk; Lungerich, Dominik; Cheon, Jinwoo , A magnetically powered nanomachine with a DNA clutch, 2024, Nature Nanotechnology, 10.1038/s41565-023-01599-6
Engineering and direct imaging of nanocube self-assembly pathwayshttps://www.nature.com/articles/s44286-024-00102-9Zhong, Yaxu; Moore, Timothy C.; Dwyer, Tobias; Batrum-Griffith, Alex; Allen, Vincent R.; Chen, Jun; Wang, Ji; Cheng, Fanrui; Glotzer, Sharon C.; Ye, Xingchen , Engineering and direct imaging of nanocube self-assembly pathways, 2024, Nature Chemical Engineering, 10.1038/s44286-024-00102-9
Coupling Liquid Electrochemical TEM and Mass?Spectrometry to Investigate Electrochemical Reactions Occurring in a Na?Ion Battery Anodehttps://onlinelibrary.wiley.com/doi/10.1002/smtd.202400365Gallegos?Moncayo, Kevyn; Folastre, Nicolas; Toledo, Milan; Tonnoir, Hélène; Rabuel, François; Gachot, Grégory; Huo, Da; Demortière, Arnaud , Coupling Liquid Electrochemical TEM and Mass?Spectrometry to Investigate Electrochemical Reactions Occurring in a Na?Ion Battery Anode, 2024, Small Methods, 10.1002/smtd.202400365
Direct in-situ imaging of electrochemical corrosion of Pd-Pt core-shell electrocatalystshttps://www.nature.com/articles/s41467-024-49434-3Shi, Fenglei; Tieu, Peter; Hu, Hao; Peng, Jiaheng; Zhang, Wencong; Li, Fan; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao; Gao, Wenpei; Pan, Xiaoqing; Wu, Jianbo , Direct in-situ imaging of electrochemical corrosion of Pd-Pt core-shell electrocatalysts, 2024, Nature Communications, 10.1038/s41467-024-49434-3
Quasi?in situ Observation of MnO 2 Nanorods by Electrochemical Transmission Electron Microscopy for Oxygen Reduction Reaction Processhttps://onlinelibrary.wiley.com/doi/10.1002/aesr.202300229Han, Zengyu; Roslie, Hany; Tan, Shu Fen; Wu, Dongshuang , Quasi?in situ Observation of MnO 2 Nanorods by Electrochemical Transmission Electron Microscopy for Oxygen Reduction Reaction Process, 2024, Advanced Energy and Sustainability Research, 10.1002/aesr.202300229
Insights into the nucleation and growth of BiOCl nanoparticles by in situ X-ray pair distribution function analysis and in situ liquid cell TEMhttps://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr01749hGordon, Matthew N.; Junkers, Laura S.; Googasian, Jack S.; Mathiesen, Jette K.; Zhan, Xun; Morgan, David Gene; Jensen, Kirsten M. Ø; Skrabalak, Sara E. , Insights into the nucleation and growth of BiOCl nanoparticles by in situ X-ray pair distribution function analysis and in situ liquid cell TEM, 2024, Nanoscale, 10.1039/D4NR01749H
Insights Into Formation and Growth of Colloidal Multielement Alloy Nanoparticles in Solution through In Situ Liquid Cell TEM Studyhttps://onlinelibrary.wiley.com/doi/10.1002/adfm.202304685Amiri, Azadeh; Yurkiv, Vitaliy; Phakatkar, Abhijit H.; Shokuhfar, Tolou; Shahbazian?Yassar, Reza , Insights Into Formation and Growth of Colloidal Multielement Alloy Nanoparticles in Solution through In Situ Liquid Cell TEM Study, 2024, Advanced Functional Materials, 10.1002/adfm.202304685
Imaging Dissolution Dynamics of Individual NaCl Nanoparticles during Deliquescence with In Situ Transmission Electron Microscopyhttps://pubs.acs.org/doi/10.1021/acs.est.4c02356Wang, Yuhang; Rastogi, Dewansh; Malek, Kotiba; Sun, Jiayue; Ahn, Martin; Asa-Awuku, Akua; Woehl, Taylor , Imaging Dissolution Dynamics of Individual NaCl Nanoparticles during Deliquescence with In Situ Transmission Electron Microscopy, 2024, Environmental Science and Technology, https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.4c02356&ref=pdf
Dynamic Evolution of Copper Nanowires during CO 2 Reduction Probed by Operando Electrochemical 4D-STEM and X-ray Spectroscopyhttps://pubs.acs.org/doi/10.1021/jacs.4c06480Yang, Yao; Shi, Chuqiao; Feijóo, Julian; Jin, Jianbo; Chen, Chubai; Han, Yimo; Yang, Peidong , Dynamic Evolution of Copper Nanowires during CO 2 Reduction Probed by Operando Electrochemical 4D-STEM and X-ray Spectroscopy, 2024, Journal of the American Chemical Society, 10.1021/jacs.4c06480
Stress-induced ordering evolution of 1D segmented heteronanostructures and their chemical post-transformationshttps://www.nature.com/articles/s41467-024-47446-7Chen, Qing-Xia; Lu, Yu-Yang; Yang, Yang; Chang, Li-Ge; Li, Yi; Yang, Yuan; He, Zhen; Liu, Jian-Wei; Ni, Yong; Yu, Shu-Hong , Stress-induced ordering evolution of 1D segmented heteronanostructures and their chemical post-transformations, 2024, Nature Communications, 10.1038/s41467-024-47446-7
Machine learning refinement of in situ images acquired by low electron dose LC-TEMhttps://academic.oup.com/mam/advance-article/doi/10.1093/micmic/ozad142/7591557?searchresult=1Katsuno, Hiroyasu; Kimura, Yuki; Yamazaki, Tomoya; Takigawa, Ichigaku , Machine learning refinement of in situ images acquired by low electron dose LC-TEM, 2024, Microscopy and Microanalysis,, 10.1093/micmic/ozad142
Toward sub-second solution exchange dynamics in flow reactors for liquid-phase transmission electron microscopyhttps://www.nature.com/articles/s41467-024-46842-3Merkens, Stefan; Tollan, Christopher; De Salvo, Giuseppe; Bejtka, Katarzyna; Fontana, Marco; Chiodini, Angelica; Kruse, Joscha; Iriarte-Alonso, Maiara Aime; Grzelczak, Marek; Seifert, Andreas , Toward sub-second solution exchange dynamics in flow reactors for liquid-phase transmission electron microscopy, 2024, Nature Communications, 10.1038/s41467-024-46842-3
Effects of salinity on the microscopic interaction and sedimentation behavior of halloysite nanotubehttps://linkinghub.elsevier.com/retrieve/pii/S016913172400259XKwon, Yeong-Man; Noh, Namgyu; Dae, Kyun-Seong; Qureshi, Yusra; Kwon, Ji-Hwan; Cho, Gye-Chun; Chang, Ilhan; Yuk, Jong Min , Effects of salinity on the microscopic interaction and sedimentation behavior of halloysite nanotube, 2024, Applied Clay Science, 10.1016/j.clay.2024.107511
New Avenues for Capturing Mineralization Events at Biomaterial Interfaces with Liquid-Transmission Electron Microscopyhttps://pubs.acs.org/doi/10.1021/acs.nanolett.4c01525DiCecco, Liza-Anastasia; Zhang, Jing; Casagrande, Travis; Grandfield, Kathryn , New Avenues for Capturing Mineralization Events at Biomaterial Interfaces with Liquid-Transmission Electron Microscopy, 2024, Nano Letters, 10.1021/acs.nanolett.4c01525
Diagnosing the Electrostatic Shielding Mechanism for Dendrite Suppression in Aqueous Zinc Batterieshttps://onlinelibrary.wiley.com/doi/10.1002/adma.202307708Yuan, Yi; Pu, Shengda D.; Pérez?Osorio, Miguel A.; Li, Zixuan; Zhang, Shengming; Yang, Sixie; Liu, Boyang; Gong, Chen; Menon, Ashok S.; Piper, Louis F. J.; Gao, Xiangwen; Bruce, Peter G.; Robertson, Alex W. , Diagnosing the Electrostatic Shielding Mechanism for Dendrite Suppression in Aqueous Zinc Batteries, 2024, Advanced Materials, 10.1002/adma.202307708
Operando Electrodeposition of Nonprecious Metal Copper Nanocatalysts on Low-Dimensional Support Materials for Nitrate Reduction Reactionshttps://pubs.acs.org/doi/10.1021/acsnano.4c04947Tan, Shu Fen; Roslie, Hany; Salim, Teddy; Han, Zengyu; Wu, Dongshuang; Liang, Caihong; Teo, Lim Fong; Lam, Yeng Ming , Operando Electrodeposition of Nonprecious Metal Copper Nanocatalysts on Low-Dimensional Support Materials for Nitrate Reduction Reactions, 2024, ACS Nano, 10.1021/acsnano.4c04947
Achieving Planar Zn Electroplating in Aqueous Zinc Batteries with Cathode?Compatible Current Densities by Cycling under Pressurehttps://onlinelibrary.wiley.com/doi/10.1002/adma.202401576Li, Zixuan; Yuan, Yi; Pu, Shengda D.; Qi, Rui; Ding, Shenghuan; Qin, Runzhi; Kareer, Anna; Bruce, Peter G.; Robertson, Alex W. , Achieving Planar Zn Electroplating in Aqueous Zinc Batteries with Cathode?Compatible Current Densities by Cycling under Pressure, 2024, Advanced Materials, 10.1002/adma.202401576
Understanding the Growth of Electrodeposited PtNi Nanoparticle Films Using Correlated In Situ Liquid Cell Transmission Electron Microscopy and Synchrotron Radiationhttps://pubs.acs.org/doi/10.1021/acs.nanolett.4c02228Parlinska-Wojtan, Magdalena; Tarnawski, Tomasz Roman; Depciuch, Joanna; De Marco, Maria Letizia; Sobczak, Kamil; Matlak, Krzysztof; Pawlyta, Miros?awa; Schaeublin, Robin E.; Chee, See Wee , Understanding the Growth of Electrodeposited PtNi Nanoparticle Films Using Correlated In Situ Liquid Cell Transmission Electron Microscopy and Synchrotron Radiation, 2024, Nano Letters, 10.1021/acs.nanolett.4c02228
Nucleation, Growth and Dissolution of Li Metal Dendrites and the Formation of Dead Li in Li-Ion Batteries Investigated by Operando Electrochemical Liquid Cell Scanning Transmission Electron Microscopyhttps://www.sciencedirect.com/science/article/pii/S221128552400836XDachraoui, Walid; Kühnel, Ruben-Simon; Battaglia, Dr. Corsin; Erni, Rolf , Nucleation, Growth and Dissolution of Li Metal Dendrites and the Formation of Dead Li in Li-Ion Batteries Investigated by Operando Electrochemical Liquid Cell Scanning Transmission Electron Microscopy, 2024, Nano Energy, 10.1016/j.nanoen.2024.110086
Deposition of Nanometric Polymer–Surfactant Complexes Formed by Cationic Dextran: A Path to Sustainable Formulationshttps://pubs.acs.org/doi/10.1021/acs.langmuir.4c02860Faizi, Hammad A.; Miller, Daniel S.; Leal, Lyndsay; Gu, Junsi; Pacholski, Michaeleen L.; Partain Iii, Emmett M.; Nimako-Boateng, Caroline; McMillan, Janet R.; Qian, Chang; Wang, Zuochen; Chen, Qian , Deposition of Nanometric Polymer–Surfactant Complexes Formed by Cationic Dextran: A Path to Sustainable Formulations, 2024, Langmuir, 10.1021/acs.langmuir.4c02860
Electrochemical liquid phase TEM in aqueous electrolytes for energy applications: the role of liquid flow configurationhttps://onlinelibrary.wiley.com/doi/full/10.1002/smtd.202401718Fontana, Marco; Bejtka, Katarzyna; Gho, Cecilia; Merkens, Stefan; Chuvilin, Andrey; Pirri, Candido Fabrizio; Chiodoni, Angelica , Electrochemical liquid phase TEM in aqueous electrolytes for energy applications: the role of liquid flow configuration, 2024, Small Methods, 10.1002/smtd.202401718
Investigating Charge-Induced Transformations of Metal Nanoparticles in a Radically-Inert Liquid: A Liquid-Cell TEM Studyhttps://www.mdpi.com/2079-4991/14/21/1709Koo, Kunmo; Seo, Jong Hyeok; Lee, Joohyun; Lee, Sooheyong; Kwon, Ji-Hwan , Investigating Charge-Induced Transformations of Metal Nanoparticles in a Radically-Inert Liquid: A Liquid-Cell TEM Study, 2024, Nanomaterials, 10.3390/nano14211709
Discovery of Molecular Intermediates and Nonclassical Nanoparticle Formation Mechanisms by Liquid Phase Electron Microscopy and Reaction Throughput Analysishttps://onlinelibrary.wiley.com/doi/10.1002/sstr.202400146Sun, Jiayue; Fritsch, Birk; Körner, Andreas; Taherkhani, Mehran; Park, Chiwoo; Wang, Mei; Hutzler, Andreas; Woehl, Taylor J. , Discovery of Molecular Intermediates and Nonclassical Nanoparticle Formation Mechanisms by Liquid Phase Electron Microscopy and Reaction Throughput Analysis, 2024, Small Structures, 10.1002/sstr.202400146
Enhanced SERS Performance of Gold Nanoparticle Assemblies on Cysteine-Mutant Tobacco Mosaic Virus Scaffoldhttps://linkinghub.elsevier.com/retrieve/pii/S2468217924001060Khan, Haziq Naseer; Ortiz-Pena, Nathaly; Moreira Da Silva, Cora; Lau-Truong, Stéphanie; Wang, Guillaume; Dusek, Jakub; Boubekeur-Lecaque, Leïla; Moravec, Tomas; Alloyeau, Damien; Ha Duong, Nguyêt-Thanh , Enhanced SERS Performance of Gold Nanoparticle Assemblies on Cysteine-Mutant Tobacco Mosaic Virus Scaffold, 2024, Journal of Science: Advanced Materials and Devices, 10.1016/j.jsamd.2024.100775
In Situ Liquid Electron Microscope Cells Strongly Attenuate Electrochemical Behaviorhttps://iopscience.iop.org/article/10.1149/1945-7111/ad963aWittman, Reed M; Sacci, Robert L; Unocic, Ray; Zawodzinski, Thomas , In Situ Liquid Electron Microscope Cells Strongly Attenuate Electrochemical Behavior, 2024, Journal of The Electrochemical Society, 10.1149/1945-7111/ad963a
Steering acidic oxygen reduction selectivity of single-atom catalysts through the second sphere effecthttps://www.nature.com/articles/s41467-024-55116-xZou, Haiyuan; Shu, Siyan; Yang, Wenqiang; Chu, You-chiuan; Cheng, Minglun; Dong, Hongliang; Liu, Hong; Li, Fan; Hu, Junhui; Wang, Zhenbin; Liu, Wei; Chen, Hao Ming; Duan, Lele , Steering acidic oxygen reduction selectivity of single-atom catalysts through the second sphere effect, 2024, Nature Communications, 10.1038/s41467-024-55116-x
Quasi/non-equilibrium state in nanobubble growth trajectory revealed by in-situ transmission electron microscopyhttps://linkinghub.elsevier.com/retrieve/pii/S1748013223000105Hu, Hao; Shi, Fenglei; Tieu, Peter; Fu, Benwei; Tao, Peng; Song, Chengyi; Shang, Wen; Pan, Xiaoqing; Deng, Tao; Wu, Jianbo , Quasi/non-equilibrium state in nanobubble growth trajectory revealed by in-situ transmission electron microscopy, 2023, Nano Today, 10.1016/j.nantod.2023.101761
Electric Field-Induced Water Condensation Visualized by Vapor-Phase Transmission Electron Microscopyhttps://pubs.acs.org/doi/10.1021/acs.jpca.2c08187Wang, Yuhang; Rastogi, Dewansh; Malek, Kotiba; Sun, Jiayue; Asa-Awuku, Akua; Woehl, Taylor J. , Electric Field-Induced Water Condensation Visualized by Vapor-Phase Transmission Electron Microscopy, 2023, The Journal of Physical Chemistry A, 10.1021/acs.jpca.2c08187
Operando studies reveal active Cu nanograins for CO2 electroreductionhttps://www.nature.com/articles/s41586-022-05540-0Yang, Yao; Louisia, Sheena; Yu, Sunmoon; Jin, Jianbo; Roh, Inwhan; Chen, Chubai; Fonseca Guzman, Maria V.; Feijóo, Julian; Chen, Peng-Cheng; Wang, Hongsen; Pollock, Christopher J.; Huang, Xin; Shao, Yu-Tsun; Wang, Cheng; Muller, David A.; Abruña, Héctor D.; Yang, Peidong , Operando studies reveal active Cu nanograins for CO2 electroreduction, 2023, Nature, 10.1038/s41586-022-05540-0
Resolution of MoS 2 Nanosheets?Induced Pulmonary Inflammation Driven by Nanoscale Intracellular Transformation and Extracellular?Vesicle Shuttleshttps://onlinelibrary.wiley.com/doi/10.1002/adma.202209615Ortiz Peña, Nathaly; Cherukula, Kondareddy; Even, Benjamin; Ji, Ding?Kun; Razafindrakoto, Sarah; Peng, Shiyuan; Silva, Amanda K. A.; Ménard?Moyon, Cécilia; Hillaireau, Hervé; Bianco, Alberto; Fattal, Elias; Alloyeau, Damien; Gazeau, Florence , Resolution of MoS 2 Nanosheets?Induced Pulmonary Inflammation Driven by Nanoscale Intracellular Transformation and Extracellular?Vesicle Shuttles, 2023, Advanced Materials, 10.1002/adma.202209615
In Situ Tracking of Crystal-Surface-Dependent Cu 2 O Nanoparticle Dissolution in an Aqueous Environmenthttps://pubs.acs.org/doi/abs/10.1021/acs.est.2c07845Wang, Xiangrui; Hung, Tak-Fu; Chen, Fu-Rong; Wang, Wen-Xiong , In Situ Tracking of Crystal-Surface-Dependent Cu 2 O Nanoparticle Dissolution in an Aqueous Environment, 2023, Environmental Science & Technology, 10.1021/acs.est.2c07845
In situ single particle characterization of the themoresponsive and co-nonsolvent behavior of PNIPAM microgels and silica@PNIPAM core-shell colloidshttps://linkinghub.elsevier.com/retrieve/pii/S0021979722022640Grau-Carbonell, Albert; Hagemans, Fabian; Bransen, Maarten; Elbers, Nina A.; van Dijk-Moes, Relinde J.A.; Sadighikia, Sina; Welling, Tom A.J.; van Blaaderen, Alfons; van Huis, Marijn A. , In situ single particle characterization of the themoresponsive and co-nonsolvent behavior of PNIPAM microgels and silica@PNIPAM core-shell colloids, 2023, Journal of Colloid and Interface Science, 10.1016/j.jcis.2022.12.116
Upper critical solution temperature polymer assemblies via variable temperature liquid phase transmission electron microscopy and liquid resonant soft X-ray scatteringhttps://www.nature.com/articles/s41467-023-38781-2Korpanty, Joanna; Wang, Cheng; Gianneschi, Nathan C. , Upper critical solution temperature polymer assemblies via variable temperature liquid phase transmission electron microscopy and liquid resonant soft X-ray scattering, 2023, Nature Communications, 10.1038/s41467-023-38781-2
Unraveling and leveraging in situ surface amorphization for enhanced hydrogen evolution reaction in alkaline mediahttps://www.nature.com/articles/s41467-023-42221-6Fu, Qiang; Wong, Lok Wing; Zheng, Fangyuan; Zheng, Xiaodong; Tsang, Chi Shing; Lai, Ka Hei; Shen, Wenqian; Ly, Thuc Hue; Deng, Qingming; Zhao, Jiong , Unraveling and leveraging in situ surface amorphization for enhanced hydrogen evolution reaction in alkaline media, 2023, Nature Communications, 10.1038/s41467-023-42221-6
Operando Electrochemical Liquid Cell Scanning Transmission Electron Microscopy Investigation of the Growth and Evolution of the Mosaic Solid Electrolyte Interphase for Lithium-Ion Batterieshttps://pubs.acs.org/doi/10.1021/acsnano.3c06879Dachraoui, Walid; Pauer, Robin; Battaglia, Corsin; Erni, Rolf , Operando Electrochemical Liquid Cell Scanning Transmission Electron Microscopy Investigation of the Growth and Evolution of the Mosaic Solid Electrolyte Interphase for Lithium-Ion Batteries, 2023, ACS Nano, 10.1021/acsnano.3c06879
Probing Sodium Storage Mechanism in Hollow Carbon Nanospheres Using Liquid Phase Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/10.1002/smll.202301415Hou, Jing; Song, Zihan; Odziomek, Mateusz; Tarakina, Nadezda V. , Probing Sodium Storage Mechanism in Hollow Carbon Nanospheres Using Liquid Phase Transmission Electron Microscopy, 2023, Small, 10.1002/smll.202301415
Shedding Light on the Birth of Hybrid Perovskites: A Correlative Study by In Situ Electron Microscopy and Synchrotron-Based X-ray Scatteringhttps://pubs.acs.org/doi/10.1021/acs.chemmater.3c01167Sidhoum, Charles; Constantin, Doru; Ihiawakrim, Dris; Lenertz, Marc; Bizien, Thomas; Sanchez, Clément; Ersen, Ovidiu , Shedding Light on the Birth of Hybrid Perovskites: A Correlative Study by In Situ Electron Microscopy and Synchrotron-Based X-ray Scattering, 2023, Chemistry of Materials, 10.1021/acs.chemmater.3c01167
Activating dynamic atomic-configuration for single-site electrocatalyst in electrochemical CO2 reductionhttps://www.nature.com/articles/s41467-023-40970-yHsu, Chia-Shuo; Wang, Jiali; Chu, You-Chiuan; Chen, Jui-Hsien; Chien, Chia-Ying; Lin, Kuo-Hsin; Tsai, Li Duan; Chen, Hsiao-Chien; Liao, Yen-Fa; Hiraoka, Nozomu; Cheng, Yuan-Chung; Chen, Hao Ming , Activating dynamic atomic-configuration for single-site electrocatalyst in electrochemical CO2 reduction, 2023, Nature Communications, 10.1038/s41467-023-40970-y
Unraveling Anisotropic and Pulsating Etching of ZnO Nanorods in Hydrochloric Acid via Correlative Electron Microscopyhttps://pubs.acs.org/doi/10.1021/acsnano.3c02940Liu, Fangyuan; Lu, Xingxu; Zhu, Chunxiang; Bian, Zichao; Song, Xiaohui; Sun, Jiyu; Zhang, Bo; Weng, Junfei; Subramanian, Ashwanth; Tong, Xiao; Zhang, Lichun; Dongare, Avinash M.; Nam, Chang-Yong; Ding, Yong; Zheng, Guoan; Tan, Haiyan; Gao, Pu-Xian , Unraveling Anisotropic and Pulsating Etching of ZnO Nanorods in Hydrochloric Acid via Correlative Electron Microscopy, 2023, ACS Nano, 10.1021/acsnano.3c02940
Understanding the sulphur-oxygen exchange process of metal sulphides prior to oxygen evolution reactionhttps://www.nature.com/articles/s41467-023-37751-yHu, Yang; Zheng, Yao; Jin, Jing; Wang, Yantao; Peng, Yong; Yin, Jie; Shen, Wei; Hou, Yichao; Zhu, Liu; An, Li; Lu, Min; Xi, Pinxian; Yan, Chun-Hua , Understanding the sulphur-oxygen exchange process of metal sulphides prior to oxygen evolution reaction, 2023, Nature Communications, 10.1038/s41467-023-37751-y
Quantification of reagent mixing in liquid flow cells for Liquid Phase-TEMhttps://www.sciencedirect.com/science/article/pii/S0304399122001735Merkens, Stefan; De Salvo, Giuseppe; Kruse, Joscha; Modin, Evgenii; Tollan, Christopher; Grzelczak, Marek; Chuvilin, Andrey , Quantification of reagent mixing in liquid flow cells for Liquid Phase-TEM, 2023, Ultramicroscopy, 10.1016/j.ultramic.2022.113654
Functionalized MXene Films with Substantially Improved Low?voltage Actuationhttps://onlinelibrary.wiley.com/doi/10.1002/adma.202307045Chen, Shaohua; Tan, Shu Fen; Singh, Harpreet; Liu, Liang; Etienne, Mathieu; Lee, Pooi See , Functionalized MXene Films with Substantially Improved Low?voltage Actuation, 2023, Advanced Materials, 10.1002/adma.202307045
Shape Transformation Mechanism of Gold Nanoplateshttps://pubs.acs.org/doi/10.1021/acsnano.2c07256Choi, Back Kyu; Kim, Jeongwon; Luo, Zhen; Kim, Joodeok; Kim, Jeong Hyun; Hyeon, Taeghwan; Mehraeen, Shafigh; Park, Sungho; Park, Jungwon , Shape Transformation Mechanism of Gold Nanoplates, 2023, ACS Nano, 10.1021/acsnano.2c07256
The role of an elastic interphase in suppressing gas evolution and promoting uniform electroplating in sodium metal anodeshttp://xlink.rsc.org/?DOI=D2EE02606FGong, Chen; Pu, Shengda D.; Zhang, Shengming; Yuan, Yi; Ning, Ziyang; Yang, Sixie; Gao, Xiangwen; Chau, Chloe; Li, Zixuan; Liu, Junliang; Pi, Liquan; Liu, Boyang; Capone, Isaac; Hu, Bingkun; Melvin, Dominic L. R.; Pasta, Mauro; Bruce, Peter G.; Robertson, Alex W. , The role of an elastic interphase in suppressing gas evolution and promoting uniform electroplating in sodium metal anodes, 2023, Energy & Environmental Science, 10.1039/D2EE02606F
Non-classical crystallization of CeO 2 by means of in situ electron microscopyhttp://xlink.rsc.org/?DOI=D3NR02400HZschiesche, Hannes; Soroka, Inna L.; Jonsson, Mats; Tarakina, Nadezda V. , Non-classical crystallization of CeO 2 by means of in situ electron microscopy, 2023, Nanoscale, 10.1039/D3NR02400H
Goethite Mineral Dissolution to Probe the Chemistry of Radiolytic Water in Liquid?Phase Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/10.1002/advs.202301904Couasnon, Thaïs; Fritsch, Birk; Jank, Michael P. M.; Blukis, Roberts; Hutzler, Andreas; Benning, Liane G. , Goethite Mineral Dissolution to Probe the Chemistry of Radiolytic Water in Liquid?Phase Transmission Electron Microscopy, 2023, Advanced Science, 10.1002/advs.202301904
A Machine-Vision Approach to Transmission Electron Microscopy Workflows, Results Analysis and Data Managementhttps://www.jove.com/t/65446/a-machine-vision-approach-to-transmission-electron-microscopyDukes, Madeline Dressel; Krans, Nynke Albertine; Marusak, Katherine; Walden, Stamp; Eldred, Tim; Franks, Alan; Larson, Ben; Guo, Yaofeng; Nackashi, David; Damiano, John , A Machine-Vision Approach to Transmission Electron Microscopy Workflows, Results Analysis and Data Management, 2023, Journal of Visualized Experiments, 10.3791/65446
Confinement Effects on the Structure of Entropy?Induced Supercrystalshttps://onlinelibrary.wiley.com/doi/10.1002/smll.202303380Goldmann, Claire; Chaâbani, Wajdi; Hotton, Claire; Impéror?Clerc, Marianne; Moncomble, Adrien; Constantin, Doru; Alloyeau, Damien; Hamon, Cyrille , Confinement Effects on the Structure of Entropy?Induced Supercrystals, 2023, Small, 10.1002/smll.202303380
Operando Liquid-Phase TEM Experiments for the Investigation of Dissolution Kinetics: Application to Li-Ion Battery Materialshttps://academic.oup.com/mam/article/29/1/105/6927146Poulizac, Julie; Boulineau, Adrien; Billy, Emmanuel; Masenelli-Varlot, Karine , Operando Liquid-Phase TEM Experiments for the Investigation of Dissolution Kinetics: Application to Li-Ion Battery Materials, 2023, Microscopy and Microanalysis, 10.1093/micmic/ozac025
In Situ Liquid Cell Transmission Electron Microscopy Study of Studtite Particle Formation and Growth via Electron Beam Radiolysishttps://pubs.acs.org/doi/10.1021/acsomega.3c07743Kurtyka, Nick; Van Devener, Brian; Chung, Brandon W.; McDonald, Luther W. , In Situ Liquid Cell Transmission Electron Microscopy Study of Studtite Particle Formation and Growth via Electron Beam Radiolysis, 2023, ACS Omega, 10.1021/acsomega.3c07743
In Situ Insights into the Nucleation and Growth Mechanisms of Gold Nanoparticles on Tobacco Mosaic Virushttps://pubs.acs.org/doi/10.1021/acs.nanolett.3c01311Moreira Da Silva, Cora; Ortiz-Peña, Nathaly; Boubekeur-Lecaque, Leïla; Dušek, Jakub; Moravec, Tomáš; Alloyeau, Damien; Ha-Duong, Nguyêt-Thanh , In Situ Insights into the Nucleation and Growth Mechanisms of Gold Nanoparticles on Tobacco Mosaic Virus, 2023, Nano Letters, 10.1021/acs.nanolett.3c01311
In-situ observation of preparation of PLGA polymeric nanoparticles using liquid cell transmission electron microscopyhttps://linkinghub.elsevier.com/retrieve/pii/S235249282300867XTakahashi, Chisato , In-situ observation of preparation of PLGA polymeric nanoparticles using liquid cell transmission electron microscopy, 2023, Materials Today Communications, 10.1016/j.mtcomm.2023.106176
In situ liquid transmission electron microscopy reveals self-assembly-driven nucleation in radiolytic synthesis of iron oxide nanoparticles in organic mediahttp://xlink.rsc.org/?DOI=D2NR01511KOrtiz Peña, Nathaly; Ihiawakrim, Dris; Cre?u, Sorina; Cotin, Geoffrey; Kiefer, Céline; Begin-Colin, Sylvie; Sanchez, Clément; Portehault, David; Ersen, Ovidiu , In situ liquid transmission electron microscopy reveals self-assembly-driven nucleation in radiolytic synthesis of iron oxide nanoparticles in organic media, 2022, Nanoscale, 10.1039/D2NR01511K
Design and fabrication of an electrochemical chip for liquid-phase transmission electron microscopyhttps://academic.oup.com/jmicro/advance-article/doi/10.1093/jmicro/dfac023/6580073Sasaki, Yuki; Mizushima, Ayako; Mita, Yoshio; Yoshida, Kaname; Kuwabara, Akihide; Ikuhara, Yuichi , Design and fabrication of an electrochemical chip for liquid-phase transmission electron microscopy, 2022, Microscopy, 10.1093/jmicro/dfac023
In-situ characterization of porcine fibroblasts in response to silver ions by Raman spectroscopy and liquid scanning transmission electron microscopyhttps://linkinghub.elsevier.com/retrieve/pii/S0039914022003186Zhao, Yuanfeng; Zhang, Wei; Van Devener, Brian; Bunch, Thomas D.; Zhou, Anhong; Isom, S. Clay , In-situ characterization of porcine fibroblasts in response to silver ions by Raman spectroscopy and liquid scanning transmission electron microscopy, 2022, Talanta, 10.1016/j.talanta.2022.123522
Metal Monolayers on Command: Underpotential Deposition at Nanocrystal Surfaces: A Quantitative Operando Electrochemical Transmission Electron Microscopy Studyhttps://pubs.acs.org/doi/10.1021/acsenergylett.2c00209Yang, Yao; Shao, Yu-Tsun; DiSalvo, Francis J.; Muller, David A.; Abruña, Héctor D. , Metal Monolayers on Command: Underpotential Deposition at Nanocrystal Surfaces: A Quantitative Operando Electrochemical Transmission Electron Microscopy Study, 2022, ACS Energy Letters, 10.1021/acsenergylett.2c00209
Atomic-level structural responsiveness to environmental conditions from 3D electron diffractionhttps://www.nature.com/articles/s41467-022-34237-1Ling, Yang; Sun, Tu; Guo, Linshuo; Si, Xiaomeng; Jiang, Yilan; Zhang, Qing; Chen, Zhaoxi; Terasaki, Osamu; Ma, Yanhang , Atomic-level structural responsiveness to environmental conditions from 3D electron diffraction, 2022, Nature Communications, 10.1038/s41467-022-34237-1
Liquid-Cell Transmission Electron Microscopy Observation of Two-Step Collapse Dynamics of Silicon Nanopillars on Evaporation of Propan-2-ol: Implications for Semiconductor Integration Densityhttps://pubs.acs.org/doi/10.1021/acsanm.2c01744Sasaki, Yuta; Yamazaki, Tomoya; Kimura, Yuki , Liquid-Cell Transmission Electron Microscopy Observation of Two-Step Collapse Dynamics of Silicon Nanopillars on Evaporation of Propan-2-ol: Implications for Semiconductor Integration Density, 2022, ACS Applied Nano Materials, 10.1021/acsanm.2c01744
Operando Resonant Soft X-ray Scattering Studies of Chemical Environment and Interparticle Dynamics of Cu Nanocatalysts for CO 2 Electroreductionhttps://pubs.acs.org/doi/10.1021/jacs.2c03662Yang, Yao; Roh, Inwhan; Louisia, Sheena; Chen, Chubai; Jin, Jianbo; Yu, Sunmoon; Salmeron, Miquel B.; Wang, Cheng; Yang, Peidong , Operando Resonant Soft X-ray Scattering Studies of Chemical Environment and Interparticle Dynamics of Cu Nanocatalysts for CO 2 Electroreduction, 2022, Journal of the American Chemical Society, 10.1021/jacs.2c03662
In Situ Three-Dimensional Electron Diffraction for Probing Structural Transformations of Single Nanocrystalshttps://pubs.acs.org/doi/10.1021/acs.chemmater.2c01744Wu, Shitao; Li, Junyan; Ling, Yang; Sun, Tu; Fan, Yaqi; Yu, Jihong; Terasaki, Osamu; Ma, Yanhang , In Situ Three-Dimensional Electron Diffraction for Probing Structural Transformations of Single Nanocrystals, 2022, Chem. Mater., https://doi.org/10.1021/acs.chemmater.2c01744
Multistep Crystallization of Dynamic Nanoparticle Superlattices in Nonaqueous Solutionshttps://pubs.acs.org/doi/10.1021/jacs.2c06535Zhong, Yaxu; Allen, Vincent R.; Chen, Jun; Wang, Yi; Ye, Xingchen , Multistep Crystallization of Dynamic Nanoparticle Superlattices in Nonaqueous Solutions, 2022, Journal of the American Chemical Society, 10.1021/jacs.2c06535
Observation of H 2 Evolution and Electrolyte Diffusion on MoS 2 Monolayer by in situ Liquid?phase Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/10.1002/adma.202206066Kim, Jihoon; Park, Anseong; Kim, Joodeok; Kwak, Seung Jae; Lee, Jae Yoon; Lee, Donghoon; Kim, Sebin; Choi, Back Kyu; Kim, Sungin; Kwag, Jimin; Kim, Younhwa; Jeon, Sungho; Lee, Won Chul; Hyeon, Taeghwan; Lee, Chul?Ho; Lee, Won Bo; Park, Jungwon , Observation of H 2 Evolution and Electrolyte Diffusion on MoS 2 Monolayer by in situ Liquid?phase Transmission Electron Microscopy, 2022, Advanced Materials, 10.1002/adma.202206066
Live Visualization of the Nucleation and Growth of Needle-Like Hydroxyapatite Crystals in Solution by In Situ TEMhttps://pubs.acs.org/doi/10.1021/acs.cgd.2c00296Dalmônico, Gisele M. L.; Ihiawakrim, Dris; Ortiz, Nathaly; Barreto Junior, Amaro Gomes; Curitiba Marcellos, Caio Felippe; Farina, Marcos; Ersen, Ovidiu; Rossi, Andre L. , Live Visualization of the Nucleation and Growth of Needle-Like Hydroxyapatite Crystals in Solution by In Situ TEM, 2022, Crystal Growth & Design, 10.1021/acs.cgd.2c00296
Nanoscale Faceting and Ligand Shell Structure Dominate the Self-Assembly of Non-Polar Nanoparticles into Superlatticeshttps://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202109093Bo, Arixin; Liu, Yawei; Kuttich, Björn; Kraus, Tobias; Widmer-Cooper, Asaph; De Jonge, Niels , Nanoscale Faceting and Ligand Shell Structure Dominate the Self-Assembly of Non-Polar Nanoparticles into Superlattices, 2022, Advanced Materials, 10.1002/adma.202109093
Metastable hexagonal close-packed palladium hydride in liquid cell TEMhttps://www.nature.com/articles/s41586-021-04391-5Hong, Jaeyoung; Bae, Jee-Hwan; Jo, Hyesung; Park, Hee-Young; Lee, Sehyun; Hong, Sung Jun; Chun, Hoje; Cho, Min Kyung; Kim, Juyoung; Kim, Joodeok; Son, Yongju; Jin, Haneul; Suh, Jin-Yoo; Kim, Sung-Chul; Roh, Ha-Kyung; Lee, Kyu Hyoung; Kim, Hyung-Seok; Chung, Kyung Yoon; Yoon, Chang Won; Lee, Kiryeong; Kim, Seo Hee; Ahn, Jae-Pyoung; Baik, Hionsuck; Kim, Gyeung Ho; Han, Byungchan; Jin, Sungho; Hyeon, Taeghwan; Park, Jungwon; Son, Chang Yun; Yang, Yongsoo; Lee, Young-Su; Yoo, Sung Jong; Chun, Dong Won , Metastable hexagonal close-packed palladium hydride in liquid cell TEM, 2022, Nature, 10.1038/s41586-021-04391-5
Frequency-controlled electrophoretic mobility of a particle within a porous, hollow shellhttps://linkinghub.elsevier.com/retrieve/pii/S0021979722012723Welling, Tom A.J.; Grau-Carbonell, Albert; Watanabe, Kanako; Nagao, Daisuke; de Graaf, Joost; van Huis, Marijn A.; van Blaaderen, Alfons , Frequency-controlled electrophoretic mobility of a particle within a porous, hollow shell, 2022, Journal of Colloid and Interface Science, 10.1016/j.jcis.2022.07.091
In Situ Electron Microscopy Study of the Dynamics of Liquid Flow in Confined Cellshttps://pubs.acs.org/doi/10.1021/acsami.2c05494Zhang, Xiuli; Zhai, Wenbo; Fan, Li; Kim, Franklin; Yu, Yi , In Situ Electron Microscopy Study of the Dynamics of Liquid Flow in Confined Cells, 2022, ACS Applied Materials & Interfaces, 10.1021/acsami.2c05494
Liquid-cell transmission electron microscopy for imaging of thermosensitive recombinant polymershttps://linkinghub.elsevier.com/retrieve/pii/S0168365922000931Isaacson, Kyle J.; Van Devener, Brian R.; Steinhauff, Douglas B.; Jensen, M. Martin; Cappello, Joseph; Ghandehari, Hamidreza , Liquid-cell transmission electron microscopy for imaging of thermosensitive recombinant polymers, 2022, Journal of Controlled Release, 10.1016/j.jconrel.2022.02.019
Feasibility of control of particle assembly by dielectrophoresis in liquid-cell transmission electron microscopyhttps://academic.oup.com/jmicro/advance-article/doi/10.1093/jmicro/dfac021/6572748?login=trueYamazaki, Tomoya; Niinomi, Hiromasa; Kimura, Yuki , Feasibility of control of particle assembly by dielectrophoresis in liquid-cell transmission electron microscopy, 2022, Microscopy, https://doi.org/10.1093/jmicro/dfac021
Direct Observation of Emulsion Morphology, Dynamics, and Demulsificationhttps://pubs.acs.org/doi/10.1021/acsnano.2c00199Vratsanos, Maria A.; Gianneschi, Nathan C. , Direct Observation of Emulsion Morphology, Dynamics, and Demulsification, 2022, ACS Nano, 10.1021/acsnano.2c00199
Organic solution-phase transmission electron microscopy of copolymer nanoassembly morphology and dynamicshttps://linkinghub.elsevier.com/retrieve/pii/S266638642200039XKorpanty, Joanna; Gnanasekaran, Karthikeyan; Venkatramani, Cadapakam; Zang, Nanzhi; Gianneschi, Nathan C. , Organic solution-phase transmission electron microscopy of copolymer nanoassembly morphology and dynamics, 2022, Cell Reports Physical Science, 10.1016/j.xcrp.2022.100772
Effect of salinity on the microscopic interaction and sedimentation behavior of halloysite clayhttps://www.researchsquare.com/article/rs-1421994/v1Noh, Namgyu; Kwon, Yeong-Man; Dae, Kyun Seong; Cho, Gye-Chun; Chang, Ilhan; Yuk, Jong Min , Effect of salinity on the microscopic interaction and sedimentation behavior of halloysite clay, 2022, Research Square, 10.21203/rs.3.rs-1421994/v1
Controlling the Shrinkage of 3D Hot Spot Droplets as a Microreactor for Quantitative SERS Detection of Anticancer Drugs in Serum Using a Handheld Raman Spectrometerhttps://pubs.acs.org/doi/10.1021/acs.analchem.2c00071Zhou, Guoliang; Li, Pan; Ge, Meihong; Wang, Junping; Chen, Siyu; Nie, Yuman; Wang, Yaoxiong; Qin, Miao; Huang, Guangyao; Lin, Dongyue; Wang, Hongzhi; Yang, Liangbao , Controlling the Shrinkage of 3D Hot Spot Droplets as a Microreactor for Quantitative SERS Detection of Anticancer Drugs in Serum Using a Handheld Raman Spectrometer, 2022, Analytical Chemistry, 10.1021/acs.analchem.2c00071
Moisture-Induced Non-Equilibrium Phase Segregation inTriple Cation Mixed Halide Perovskite Monitored byIn SituCharacterization Techniques and Solid-State NMRhttps://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12335Kazemi, Mohammead Ali Akhavan; Folastre, Nicolas; Raval, Parth; Sliwa, Michel; Nsanzimana, Jean Marie Vianney; Golonu, Sema; Demortiere, Arnaud; Rousset, Jean; Lafon, Olivier; Delevoye, Laurent; Manjunatha Reddy, G.N.; Sauvage, Frédéric , Moisture-Induced Non-Equilibrium Phase Segregation inTriple Cation Mixed Halide Perovskite Monitored byIn SituCharacterization Techniques and Solid-State NMR, 2022, Energy & Environmental Materials, https://www.doi.org/10.1002/eem2.12335
Mechanism and Control of Saponite Synthesis from a Self-Assembling Nanocrystalline Precursorhttps://pubs.acs.org/doi/10.1021/acs.langmuir.2c00425Blukis, Roberts; Schindler, Maria; Couasnon, Thaïs; Benning, Liane G. , Mechanism and Control of Saponite Synthesis from a Self-Assembling Nanocrystalline Precursor, 2022, Langmuir, 10.1021/acs.langmuir.2c00425
Use of a Bipolar, Metallic Luggin-Haber Probe for Electrochemical Measurements of Interfacial Potentialhttps://iopscience.iop.org/article/10.1149/1945-7111/aca367Choudhary, Sanjay; Marusak, Katherine Elizabeth; Eldred, Timothy; Kelly, Robert , Use of a Bipolar, Metallic Luggin-Haber Probe for Electrochemical Measurements of Interfacial Potential, 2022, Journal of The Electrochemical Society, 10.1149/1945-7111/aca367
The influence of l -aspartic acid on calcium carbonate nucleation and growth revealed by in situ liquid phase TEMhttp://xlink.rsc.org/?DOI=D2CE00117ALonguinho, Mariana M.; Ramnarain, Vinavadini; Ortiz Peña, Nathaly; Ihiawakrim, Dris; Soria-Martínez, Rubén; Farina, Marcos; Ersen, Ovidiu; Rossi, André L. , The influence of l -aspartic acid on calcium carbonate nucleation and growth revealed by in situ liquid phase TEM, 2022, CrystEngComm, 10.1039/D2CE00117A
Aerosol Jet Printing as a Versatile Sample Preparation Method for Operando Electrochemical TEM Microdeviceshttps://onlinelibrary.wiley.com/doi/10.1002/admi.202200530Morzy, J?drzej K.; Sartor, Aileen; Dose, Wesley M.; Ou, Canlin; Kar?Narayan, Sohini; De Volder, Michael F. L.; Ducati, Caterina , Aerosol Jet Printing as a Versatile Sample Preparation Method for Operando Electrochemical TEM Microdevices, 2022, Advanced Materials Interfaces, 10.1002/admi.202200530
Monitoring of CaCO3 Nanoscale Structuration through Real-Time Liquid Phase Transmission Electron Microscopy and Hyperpolarized NMRhttps://pubs.acs.org/doi/10.1021/jacs.2c05731Ramnarain, Vinavadini; Georges, Tristan; Ortiz Peña, Nathaly; Ihiawakrim, Dris; Longuinho, Mariana; Bulou, Hervé; Gervais, Christel; Sanchez, Clément; Azaïs, Thierry; Ersen, Ovidiu , Monitoring of CaCO3 Nanoscale Structuration through Real-Time Liquid Phase Transmission Electron Microscopy and Hyperpolarized NMR, 2022, Journal of the American Chemical Society, 10.1021/jacs.2c05731
Sacrificial W Facilitates Self-Reconstruction with Abundant Active Sites for Water Oxidationhttps://onlinelibrary.wiley.com/doi/abs/10.1002/smll.202107249Fan, Ke; Zou, Haiyuan; Ding, Yunxuan; Aditya Dharanipragada, N.V.R; Fan, Lizhou; Ken Inge, A.; Duan, Lele; Zhang, Biaobiao; Sun, Licheng , Sacrificial W Facilitates Self-Reconstruction with Abundant Active Sites for Water Oxidation, 2022, Small, 10.1002/smll.202107249
Elucidating Cathodic Corrosion Mechanisms with Operando Electrochemical Transmission Electron Microscopyhttps://pubs.acs.org/doi/10.1021/jacs.2c05989Yang, Yao; Shao, Yu-Tsun; Lu, Xinyao; Yang, Yan; Ko, Hsin-Yu; Jr, Robert A DiStasio; DiSalvo, Francis J; Muller, David A; Abruña, Héctor D , Elucidating Cathodic Corrosion Mechanisms with Operando Electrochemical Transmission Electron Microscopy, 2022, Journal of the American Chemical Society, 10.1021/jacs.2c05989
Reliable electrochemical setup for in situ observations with an atmospheric SEMhttps://academic.oup.com/jmicro/advance-article/doi/10.1093/jmicro/dfac028/6605833Yoshida, Kaname; Sasaki, Yuki; Kuwabara, Akihide; Ikuhara, Yuichi , Reliable electrochemical setup for in situ observations with an atmospheric SEM, 2022, Microscopy, 10.1093/jmicro/dfac028
Possible embryo and precursor of crystalline nuclei of calcium carbonate observed by LC-TEMhttp://pubs.rsc.org/en/Content/ArticleLanding/2022/FD/D1FD00125FKimura, Yuki; Katsuno, Hiroyasu; Yamazaki, Tomoya , Possible embryo and precursor of crystalline nuclei of calcium carbonate observed by LC-TEM, 2022, Faraday Discussions, 10.1039/D1FD00125F
Discovering the nanoscale origins of localized corrosion in additive manufactured stainless steel 316L by liquid cell transmission electron microscopyhttps://www.sciencedirect.com/science/article/pii/S0010938X22005777Tian, Mengkun; Choundraj, Jahnavi Desai; Voisin, Thomas; Wang, Y. Morris; Kacher, Josh , Discovering the nanoscale origins of localized corrosion in additive manufactured stainless steel 316L by liquid cell transmission electron microscopy, 2022, Corrosion Science, 10.1016/j.corsci.2022.110659
In Situ Characterization of Carbonate/Oil/Water Interfacial Layers Using Advanced EM Techniques for Enhanced Oil Recoveryhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.2c01932Cha, Dongkyu; Ayirala, Subhash C.; AlOtaibi, Mohammed B.; AlYousef, Ali A. , In Situ Characterization of Carbonate/Oil/Water Interfacial Layers Using Advanced EM Techniques for Enhanced Oil Recovery, 2022, Energy & Fuels, 10.1021/acs.energyfuels.2c01932
The effects of nano-silica on early-age hydration reactions of nano Portland cementhttps://linkinghub.elsevier.com/retrieve/pii/S0958946522002918Dong, Peng; Allahverdi, Ali; Andrei, Carmen M.; Bassim, Nabil D. , The effects of nano-silica on early-age hydration reactions of nano Portland cement, 2022, Cement and Concrete Composites, 10.1016/j.cemconcomp.2022.104698
Operando electrochemical TEM, ex-situ SEM and atomistic modeling studies of MnS dissolution and its role in triggering pitting corrosion in 304L stainless steelhttps://linkinghub.elsevier.com/retrieve/pii/S0010938X22001020Kovalov, Danyil; Taylor, Christopher D.; Heinrich, Helge; Kelly, Robert G. , Operando electrochemical TEM, ex-situ SEM and atomistic modeling studies of MnS dissolution and its role in triggering pitting corrosion in 304L stainless steel, 2022, Corrosion Science, 10.1016/j.corsci.2022.110184
Radiolysis-Driven Evolution of Gold Nanostructures – Model Verification by Scale Bridging In Situ Liquid-Phase Transmission Electron Microscopy and X-Ray Diffractionhttps://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202202803Fritsch, Birk; zech, T. S.; Bruns, Mark, P.; Körner, Andreas; Khadivianazar, Saba; Wu, Mingjian; Talebi, Neda Zargar; Virtanen, Sannakaisa; Unruh, Tobias; Jank, Michael P. M.; Spiecker, Erdmann; Hutzler, Andreas , Radiolysis-Driven Evolution of Gold Nanostructures – Model Verification by Scale Bridging In Situ Liquid-Phase Transmission Electron Microscopy and X-Ray Diffraction, 2022, Advanced Science, 10.1002/advs.202202803
Controlling radiolysis chemistry on the nanoscale in liquid cell scanning transmission electron microscopyhttps://pubs.rsc.org/en/content/articlelanding/2021/cp/d0cp06369jLee, Juhan; Nicholls, Daniel; Browning, Nigel D.; Mehdi, B. Layla , Controlling radiolysis chemistry on the nanoscale in liquid cell scanning transmission electron microscopy, 2021, Physical Chemistry Chemical Physics, 10.1039/D0CP06369J
Radiolysis-Induced Crystallization of Sodium Chloride in Acetone by Electron Beam Irradiationhttps://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/abs/radiolysisinduced-crystallization-of-sodium-chloride-in-acetone-by-electron-beam-irradiation/77287828D8575909EBA1DC87CE6F9784Yamazaki, Tomoya; Kimura, Yuki , Radiolysis-Induced Crystallization of Sodium Chloride in Acetone by Electron Beam Irradiation, 2021, Microscopy and Microanalysis, 10.1017/S1431927621000179
Detection of Pb2+ traces in dispersion of Cs4PbBr6 nanocrystals by in situ liquid cell transmission electron microscopyhttps://pubs.rsc.org/en/content/articlelanding/2021/nr/d0nr08584gDang, Zhiya; Manna, Liberato; Baranov, Dmitry , Detection of Pb2+ traces in dispersion of Cs4PbBr6 nanocrystals by in situ liquid cell transmission electron microscopy, 2021, Nanoscale, 10.1039/D0NR08584G
Visualizing Ligand-Mediated Bimetallic Nanocrystal Formation Pathways with in Situ Liquid-Phase Transmission Electron Microscopy Synthesishttps://pubs.acs.org/doi/pdf/10.1021/acsnano.0c07131Wang, Mei; Leff, Asher C.; Li, Yue; Woehl, Taylor J. , Visualizing Ligand-Mediated Bimetallic Nanocrystal Formation Pathways with in Situ Liquid-Phase Transmission Electron Microscopy Synthesis, 2021, ACS Nano, 10.1021/acsnano.0c07131
On-Chip Electrochemical Analysis Combined with Liquid-Phase Electron Microscopy of Zinc Deposition/Dissolutionhttps://doi.org/10.1149/1945-7111/ac39e0Sasaki, Yuki; Yoshida, Kaname; Kuwabara, Akihide; Ikuhara, Yuichi , On-Chip Electrochemical Analysis Combined with Liquid-Phase Electron Microscopy of Zinc Deposition/Dissolution, 2021, Journal of The Electrochemical Society, 10.1149/1945-7111/ac39e0
Pitfalls in Electrochemical Liquid Cell Transmission Electron Microscopy for Dendrite Observationhttps://onlinelibrary.wiley.com/doi/abs/10.1002/aesr.202100160Zhang, Xiuli; Liu, Weiyan; Chen, Zhaoxi; Huang, Yifan; Liu, Wei; Yu, Yi , Pitfalls in Electrochemical Liquid Cell Transmission Electron Microscopy for Dendrite Observation, 2021, Advanced Energy and Sustainability Research, 10.1002/aesr.202100160
Revealing Reactions between the Electron Beam and Nanoparticle Capping Ligands with Correlative Fluorescence and Liquid-Phase Electron Microscopyhttps://doi.org/10.1021/acsami.1c10957Dissanayake, Thilini U.; Wang, Mei; Woehl, Taylor J. , Revealing Reactions between the Electron Beam and Nanoparticle Capping Ligands with Correlative Fluorescence and Liquid-Phase Electron Microscopy, 2021, ACS Applied Materials & Interfaces, 10.1021/acsami.1c10957
In Situ Study of the Wet Chemical Etching of SiO2 and Nanoparticle@SiO2 Core–Shell Nanosphereshttps://doi.org/10.1021/acsanm.0c02771Grau-Carbonell, Albert; Sadighikia, Sina; Welling, Tom A. J.; van Dijk-Moes, Relinde J. A.; Kotni, Ramakrishna; Bransen, Maarten; van Blaaderen, Alfons; van Huis, Marijn A. , In Situ Study of the Wet Chemical Etching of SiO2 and Nanoparticle@SiO2 Core–Shell Nanospheres, 2021, ACS Applied Nano Materials, 10.1021/acsanm.0c02771
High temporal-resolution scanning transmission electron microscopy using sparse-serpentine scan pathwayshttps://www.nature.com/articles/s41598-021-02052-1Ortega, Eduardo; Nicholls, Daniel; Browning, Nigel D.; de Jonge, Niels , High temporal-resolution scanning transmission electron microscopy using sparse-serpentine scan pathways, 2021, Scientific Reports, 10.1038/s41598-021-02052-1
Two-step assembly kinetics of gold nanoparticleshttps://pubs.rsc.org/en/content/articlelanding/2021/tc/d0tc05076hLyu, Jieli; Alloyeau, Damien; Hamon, Cyrille; Constantin, Doru , Two-step assembly kinetics of gold nanoparticles, 2021, Journal of Materials Chemistry C, 10.1039/D0TC05076H
Protein-induced metamorphosis of unilamellar lipid vesicles to multilamellar hybrid vesicleshttp://www.sciencedirect.com/science/article/pii/S0168365921000134Koo, Bon Il; Kim, Inhye; Yang, Moon Young; Jo, Sung Duk; Koo, Kunmo; Shin, Seo Yeon; Park, Kyung Mok; Yuk, Jong Min; Lee, Eunji; Nam, Yoon Sung , Protein-induced metamorphosis of unilamellar lipid vesicles to multilamellar hybrid vesicles, 2021, Journal of Controlled Release, 10.1016/j.jconrel.2021.01.004
Visualizing Electron Beam-Capping Ligand Reactions for Controlled Nanoparticle Imaging with Liquid Phase Transmission Electron Microscopyhttps://chemrxiv.org/engage/chemrxiv/article-details/60c73cc09abda2727df8b5d8Dissanayake, Thilini Umesha; Wang, Mei; Woehl, Taylor , Visualizing Electron Beam-Capping Ligand Reactions for Controlled Nanoparticle Imaging with Liquid Phase Transmission Electron Microscopy, 2021, ArXiv, 10.26434/chemrxiv.14770797.v1
Nanoprobes to investigate nonspecific interactions in lipid bilayers: from defect-mediated adhesion to membrane disruptionhttps://pubs.rsc.org/en/content/articlelanding/2021/na/d1na00360gRazza, Nicolò; D. Lavino, Alessio; Fadda, Giulia; Lairez, Didier; Impagnatiello, Andrea; Marchisio, Daniele; Sangermano, Marco; Rizza, Giancarlo , Nanoprobes to investigate nonspecific interactions in lipid bilayers: from defect-mediated adhesion to membrane disruption, 2021, Nanoscale Advances, 10.1039/D1NA00360G
Anomalous nanoparticle surface diffusion in LCTEM is revealed by deep learning-assisted analysishttps://www.pnas.org/content/118/10/e2017616118Jamali, Vida; Hargus, Cory; Ben-Moshe, Assaf; Aghazadeh, Amirali; Ha, Hyun Dong; Mandadapu, Kranthi K.; Alivisatos, A. Paul , Anomalous nanoparticle surface diffusion in LCTEM is revealed by deep learning-assisted analysis, 2021, Proceedings of the National Academy of Sciences, 10.1073/pnas.2017616118
Mechanistic Insights into Nanobubble Merging Studied Using In Situ Liquid-Phase Electron Microscopyhttps://doi.org/10.1021/acs.langmuir.0c03208Nag, Sarthak; Tomo, Yoko; Takahashi, Koji; Kohno, Masamichi , Mechanistic Insights into Nanobubble Merging Studied Using In Situ Liquid-Phase Electron Microscopy, 2021, Langmuir, 10.1021/acs.langmuir.0c03208
Quantitative In Situ Visualization of Thermal Effects on the Formation of Gold Nanocrystals in Solutionhttps://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202102514Khelfa, Abdelali; Nelayah, Jaysen; Amara, Hakim; Wang, Guillaume; Ricolleau, Christian; Alloyeau, Damien , Quantitative In Situ Visualization of Thermal Effects on the Formation of Gold Nanocrystals in Solution, 2021, Advanced Materials, 10.1002/adma.202102514
Label-free characterization of organic nanocarriers reveals persistent single molecule cores for hydrocarbon sequestrationhttps://www.nature.com/articles/s41467-021-23382-8McAfee, Terry; Ferron, Thomas; Cordova, Isvar A.; Pickett, Phillip D.; McCormick, Charles L.; Wang, Cheng; Collins, Brian A. , Label-free characterization of organic nanocarriers reveals persistent single molecule cores for hydrocarbon sequestration, 2021, Nature Communications, 10.1038/s41467-021-23382-8
Dipeptide Nanostructure Assembly and Dynamics via in Situ Liquid-Phase Electron Microscopyhttps://doi.org/10.1021/acsnano.1c06130Gnanasekaran, Karthikeyan; Korpanty, Joanna; Berger, Or; Hampu, Nicholas; Halperin-Sternfeld, Michal; Cohen-Gerassi, Dana; Adler-Abramovich, Lihi; Gianneschi, Nathan C. , Dipeptide Nanostructure Assembly and Dynamics via in Situ Liquid-Phase Electron Microscopy, 2021, ACS Nano, 10.1021/acsnano.1c06130
Direct Observation of Liquid-to-Solid Phase Transformations during the Electrochemical Deposition of Poly(3,4-ethylenedioxythiophene) (PEDOT) by Liquid-Phase Transmission Electron Microscopy (LPTEM)https://doi.org/10.1021/acs.macromol.1c00404Subramanian, Vivek; Martin, David C. , Direct Observation of Liquid-to-Solid Phase Transformations during the Electrochemical Deposition of Poly(3,4-ethylenedioxythiophene) (PEDOT) by Liquid-Phase Transmission Electron Microscopy (LPTEM), 2021, Macromolecules, 10.1021/acs.macromol.1c00404
A NIST facility for resonant soft x-ray scattering measuring nano-scale soft matter structure at NSLS-IIhttps://doi.org/10.1088/1361-648x/abdffbGann, Eliot; Crofts, Thomas; Holland, Glenn; Beaucage, Peter; McAfee, Terry; Kline, R. Joseph; Collins, Brian A.; McNeill, Christopher R.; Fischer, Daniel A.; DeLongchamp, Dean M. , A NIST facility for resonant soft x-ray scattering measuring nano-scale soft matter structure at NSLS-II, 2021, Journal of Physics: Condensed Matter, 10.1088/1361-648X/abdffb
Thickness Dependence of Proton-Exchange-Membrane Propertieshttps://iopscience.iop.org/article/10.1149/1945-7111/ac2973Luo, Xiaoyan; Lau, Grace; Tesfaye, Meron; Arthurs, Claire R.; Cordova, Isvar; Wang, Cheng; Yandrasits, Michael; Kusoglu, Ahmet , Thickness Dependence of Proton-Exchange-Membrane Properties, 2021, Journal of The Electrochemical Society, 10.1149/1945-7111/ac2973
Thermoresponsive polymer assemblies via variable temperature liquid-phase transmission electron microscopy and small angle X-ray scatteringhttps://www.nature.com/articles/s41467-021-26773-zKorpanty, Joanna; Parent, Lucas R.; Hampu, Nicholas; Weigand, Steven; Gianneschi, Nathan C. , Thermoresponsive polymer assemblies via variable temperature liquid-phase transmission electron microscopy and small angle X-ray scattering, 2021, Nature Communications, 10.1038/s41467-021-26773-z
Galvanic Transformation Dynamics in Heterostructured Nanoparticleshttps://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202105866Du, Jingshan S.; He, Kun; Xu, Yaobin; Wahl, Carolin B.; Xu, David D.; Dravid, Vinayak P.; Mirkin, Chad A. , Galvanic Transformation Dynamics in Heterostructured Nanoparticles, 2021, Advanced Functional Materials, 10.1002/adfm.202105866
Studying the Effects of Temperature on the Nucleation and Growth of Nanoparticles by Liquid-Cell Transmission Electron Microscopyhttps://www.jove.com/t/62225/studying-effects-temperature-on-nucleation-growth-nanoparticlesKhelfa, Abdelali; Nelayah, Jaysen; Wang, Guillaume; Ricolleau, Christian; Alloyeau, Damien , Studying the Effects of Temperature on the Nucleation and Growth of Nanoparticles by Liquid-Cell Transmission Electron Microscopy, 2021, Journal of Visualized Experiments, 10.3791/62225
Accessing local electron-beam induced temperature changes during in situ liquid-phase transmission electron microscopyhttps://pubs.rsc.org/en/content/articlelanding/2021/na/d0na01027hFritsch, Birk; Hutzler, Andreas; Wu, Mingjian; Khadivianazar, Saba; Vogl, Lilian; Jank, Michael P. M.; März, Martin; Spiecker, Erdmann , Accessing local electron-beam induced temperature changes during in situ liquid-phase transmission electron microscopy, 2021, Nanoscale Advances, 10.1039/D0NA01027H
Direct observation of the moment of nucleation from a solution by TEMhttps://doi.org/10.1093/jmicro/dfab046Kimura, Yuki , Direct observation of the moment of nucleation from a solution by TEM, 2021, Microscopy, 10.1093/jmicro/dfab046
Understanding Symmetry Breaking at the Single-Particle Level via the Growth of Tetrahedron-Shaped Nanocrystals from Higher-Symmetry Precursorshttps://pubs.acs.org/doi/10.1021/acsnano.1c04056Sun, Muhua; Cheng, Zhihua; Chen, Weiyin; Jones, Matthew , Understanding Symmetry Breaking at the Single-Particle Level via the Growth of Tetrahedron-Shaped Nanocrystals from Higher-Symmetry Precursors, 2021, ACS Nano, 10.1021/acsnano.1c04056
Mechanistic Understanding of Water Oxidation in the Presence of a Copper Complex by In Situ Electrochemical Liquid Transmission Electron Microscopyhttps://doi.org/10.1021/acsami.1c00243Balaghi, S. Esmael; Mehrabani, Somayeh; Mousazade, Younes; Bagheri, Robabeh; Sologubenko, Alla S.; Song, Zhenlun; Patzke, Greta R.; Najafpour, Mohammad Mahdi , Mechanistic Understanding of Water Oxidation in the Presence of a Copper Complex by In Situ Electrochemical Liquid Transmission Electron Microscopy, 2021, ACS Applied Materials & Interfaces, 10.1021/acsami.1c00243
Dynamic interplay between interfacial nanobubbles: oversaturation promotes anisotropic depinning and bubble coalescencehttps://pubs.rsc.org/en/content/articlelanding/2021/cp/d1cp03451kNag, Sarthak; Tomo, Yoko; Teshima, Hideaki; Takahashi, Koji; Kohno, Masamichi , Dynamic interplay between interfacial nanobubbles: oversaturation promotes anisotropic depinning and bubble coalescence, 2021, Physical Chemistry Chemical Physics, 10.1039/D1CP03451K
Direct Observation of Oxygen Evolution and Surface Restructuring on Mn2O3 Nanocatalysts Using In Situ and Ex Situ Transmission Electron Microscopy | Nano Lettershttps://pubs.acs.org/doi/10.1021/acs.nanolett.1c02378?goto=articleMetrics&ref=pdfZhao, Guangming; Yao, Yunduo; Lu, Wei; Guo, Xuyun; Trucoli, Antonio; Zhu, Ye , Direct Observation of Oxygen Evolution and Surface Restructuring on Mn2O3 Nanocatalysts Using In Situ and Ex Situ Transmission Electron Microscopy | Nano Letters, 2021, Nano Letters, 10.1021/acs.nanolett.1c02378
Atomistic insights into the nucleation and growth of platinum on palladium nanocrystalshttps://www.nature.com/articles/s41467-021-23290-xGao, Wenpei; Elnabawy, Ahmed O.; Hood, Zachary D.; Shi, Yifeng; Wang, Xue; Roling, Luke T.; Pan, Xiaoqing; Mavrikakis, Manos; Xia, Younan; Chi, Miaofang , Atomistic insights into the nucleation and growth of platinum on palladium nanocrystals, 2021, Nature Communications, 10.1038/s41467-021-23290-x
Revealing the Role of Fluoride-Rich Battery Electrode Interphases by Operando Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.202003118Gong, Chen; Pu, Shengda D.; Gao, Xiangwen; Yang, Sixie; Liu, Junliang; Ning, Ziyang; Rees, Gregory J.; Capone, Isaac; Pi, Liquan; Liu, Boyang; Hartley, Gareth O.; Fawdon, Jack; Luo, Jun; Pasta, Mauro; Grovenor, Chris R. M.; Bruce, Peter G.; Robertson, Alex W. , Revealing the Role of Fluoride-Rich Battery Electrode Interphases by Operando Transmission Electron Microscopy, 2021, Advanced Energy Materials, https://doi.org/10.1002/aenm.202003118
In Situ Probing the Kinetics of Gold Nanoparticle Thermal Sintering in Liquids: Implications for Ink-Jet Printinghttps://doi.org/10.1021/acsanm.0c03133Zhang, Xiuli; Liu, Weiyan; Li, Hailong; Xia, Shuixin; Tsung, Chia-Kuang; Liu, Hao; Liu, Wei; Yu, Yi , In Situ Probing the Kinetics of Gold Nanoparticle Thermal Sintering in Liquids: Implications for Ink-Jet Printing, 2021, ACS Applied Nano Materials, 10.1021/acsanm.0c03133
Assembly of Two-Dimensional Metal Organic Framework Superstructures via Solvent-Mediated Oriented Attachmenthttps://doi.org/10.1021/acs.jpcc.1c06699Jose, Nicholas A.; Varghese, Jithin John; Mushrif, Samir H.; Zeng, Hua Chun; Lapkin, Alexei A. , Assembly of Two-Dimensional Metal Organic Framework Superstructures via Solvent-Mediated Oriented Attachment, 2021, The Journal of Physical Chemistry C, 10.1021/acs.jpcc.1c06699
Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreductionhttp://www.nature.com/articles/s41467-021-20961-7Wang, Xingli; Klingan, Katharina; Klingenhof, Malte; Möller, Tim; Ferreira de Araújo, Jorge; Martens, Isaac; Bagger, Alexander; Jiang, Shan; Rossmeisl, Jan; Dau, Holger; Strasser, Peter , Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction, 2021, Nature Communications, 10.1038/s41467-021-20961-7
Operando Methods in Electrocatalysishttps://doi.org/10.1021/acscatal.0c04789Yang, Yao; Xiong, Yin; Zeng, Rui; Lu, Xinyao; Krumov, Mihail; Huang, Xin; Xu, Weixuan; Wang, Hongsen; DiSalvo, Francis J.; Brock, Joel. D.; Muller, David A.; Abruña, Héctor D. , Operando Methods in Electrocatalysis, 2021, ACS Catalysis, 10.1021/acscatal.0c04789
In situ liquid cell transmission electron microscopy guiding the design of large-sized cocatalysts coupled with ultra-small photocatalysts for highly efficient energy harvestinghttp://xlink.rsc.org/?DOI=D1TA02975DGao, Chunlang; Zhuang, Chunqiang; Li, Yuanli; Qi, Heyang; Chen, Ge; Sun, Zaicheng; Zou, Jin; Han, Xiaodong , In situ liquid cell transmission electron microscopy guiding the design of large-sized cocatalysts coupled with ultra-small photocatalysts for highly efficient energy harvesting, 2021, Journal of Materials Chemistry A, 10.1039/D1TA02975D
The five shades of oleylamine in a morphological transition of cobalt nanospheres to nanorodshttps://pubs.rsc.org/en/content/articlelanding/2021/nr/d1nr01502hMoisset, Arthur; Sodreau, Alexandre; Vivien, Anthony; Salzemann, Caroline; Andreazza, Pascal; Giorgio, Suzanne; Petit, Marc; Petit, Christophe , The five shades of oleylamine in a morphological transition of cobalt nanospheres to nanorods, 2021, Nanoscale, 10.1039/D1NR01502H
A polymer controlled nucleation route towards the generalized growth of organic-inorganic perovskite single crystalshttps://www.nature.com/articles/s41467-021-22193-1Ma, Lin; Yan, Zhengguang; Zhou, Xiaoyuan; Pi, Yiqun; Du, Yiping; Huang, Jie; Wang, Kaiwen; Wu, Ke; Zhuang, Chunqiang; Han, Xiaodong , A polymer controlled nucleation route towards the generalized growth of organic-inorganic perovskite single crystals, 2021, Nature Communications, 10.1038/s41467-021-22193-1
Shape Transformation Mechanism of Gallium–Indium Alloyed Liquid Metal Nanoparticleshttps://onlinelibrary.wiley.com/doi/abs/10.1002/admi.202001874He, Jing; Shi, Fenglei; Wu, Jianbo; Ye, Jian , Shape Transformation Mechanism of Gallium–Indium Alloyed Liquid Metal Nanoparticles, 2021, Advanced Materials Interfaces, https://doi.org/10.1002/admi.202001874
In Situ Atomic-Scale TEM Observation of Ag Nanoparticle-Mediated Coalescence in Liquidshttp://www.sciencedirect.com/science/article/pii/S0169433221001331Hou, Szu-Yu; Huang, Chih-Yang; Tsai, Shin-Bei; Chen, Jui-Yuan; Wu, Wen-Wei , In Situ Atomic-Scale TEM Observation of Ag Nanoparticle-Mediated Coalescence in Liquids, 2021, Applied Surface Science, 10.1016/j.apsusc.2021.149057
In-situ water-immersion experiments on amorphous silicates in the MgO–SiO2 system: implications for the onset of aqueous alteration in primitive meteoriteshttp://www.sciencedirect.com/science/article/pii/S0016703720306578Igami, Yohei; Tsuchiyama, Akira; Yamazaki, Tomoya; Matsumoto, Megumi; Kimura, Yuki , In-situ water-immersion experiments on amorphous silicates in the MgO–SiO2 system: implications for the onset of aqueous alteration in primitive meteorites, 2021, Geochimica et Cosmochimica Acta, 10.1016/j.gca.2020.10.023
Understanding the Dynamics of Molecular Water Oxidation Catalysts with Liquid-Phase Transmission Electron Microscopy: The Case of Vitamin B12https://doi.org/10.1021/acssuschemeng.1c03539Abdi, Zahra; Balaghi, S. Esmael; Sologubenko, Alla S.; Willinger, Marc-Georg; Vandichel, Matthias; Shen, Jian-Ren; Allakhverdiev, Suleyman I.; Patzke, Greta R.; Najafpour, Mohammad Mahdi , Understanding the Dynamics of Molecular Water Oxidation Catalysts with Liquid-Phase Transmission Electron Microscopy: The Case of Vitamin B12, 2021, ACS Sustainable Chemistry & Engineering, 10.1021/acssuschemeng.1c03539
Ultra-small size gelatin nanogel as a blood brain barrier impermeable contrast agent for magnetic resonance imaginghttps://www.sciencedirect.com/science/article/pii/S1742706121001021Kimura, Atsushi; Jo, Jun-ichiro; Yoshida, Fumiya; Hong, Zhang; Tabata, Yasuhiko; Sumiyoshi, Akira; Taguchi, Mitsumasa; Aoki, Ichio , Ultra-small size gelatin nanogel as a blood brain barrier impermeable contrast agent for magnetic resonance imaging, 2021, Acta Biomaterialia, 10.1016/j.actbio.2021.02.016
Accelerated decomposition of Bi2S3 nanorods in water under an electron beam: a liquid phase transmission electron microscopy studyhttps://doi.org/10.1088/1361-6528/abe150Kim, Su Yeon; Kim, Ji Hyeon; Jeong, Taehyeon; Kim, Kyung Bin; Kim, Hyung Joong; Nam, Ki Min; Ahn, Sang Jung; Kwon, Ji Hwan; Kim, Young Heon , Accelerated decomposition of Bi2S3 nanorods in water under an electron beam: a liquid phase transmission electron microscopy study, 2021, Nanotechnology, 10.1088/1361-6528/abe150
Probing morphology and chemistry in complex soft materials with in situ resonant soft x-ray scatteringhttps://doi.org/10.1088/1361-648x/ac0194Zhong, Wenkai; Liu, Feng; Wang, Cheng , Probing morphology and chemistry in complex soft materials with in situ resonant soft x-ray scattering, 2021, Journal of Physics: Condensed Matter, 10.1088/1361-648X/ac0194
In Situ Liquid Electrochemical TEM Investigation of LiMn 1.5 Ni 0.5 O 4 Thin Film Cathode for Micro?Battery Applicationshttps://onlinelibrary.wiley.com/doi/10.1002/smtd.202100891Bhatia, Ankush; Cretu, Sorina; Hallot, Maxime; Folastre, Nicolas; Berthe, Maxime; Troadec, David; Roussel, Pascal; Pereira?Ramos, Jean?Pierre; Baddour?Hadjean, Rita; Lethien, Christophe; Demortière, Arnaud , In Situ Liquid Electrochemical TEM Investigation of LiMn 1.5 Ni 0.5 O 4 Thin Film Cathode for Micro?Battery Applications, 2021, Small Methods, 10.1002/smtd.202100891
Self-similar mesocrystals form via interface-driven nucleation and assemblyhttps://www.nature.com/articles/s41586-021-03300-0Zhu, Guomin; Sushko, Maria L.; Loring, John S.; Legg, Benjamin A.; Song, Miao; Soltis, Jennifer A.; Huang, Xiaopeng; Rosso, Kevin M.; De Yoreo, James J. , Self-similar mesocrystals form via interface-driven nucleation and assembly, 2021, Nature, 10.1038/s41586-021-03300-0
In situ electron microscopy analysis of electrochemical Zn deposition onto an electrodehttp://www.sciencedirect.com/science/article/pii/S0378775320311356Sasaki, Yuki; Yoshida, Kaname; Kawasaki, Tadahiro; Kuwabara, Akihide; Ukyo, Yoshio; Ikuhara, Yuichi , In situ electron microscopy analysis of electrochemical Zn deposition onto an electrode, 2021, Journal of Power Sources, 10.1016/j.jpowsour.2020.228831
Observing Growth and Crystallization of Au@ZnO Core–Shell Nanoparticles by In Situ Liquid Cell Transmission Electron Microscopy: Implications for Photocatalysis and Gas-Sensing Applicationshttps://doi.org/10.1021/acsanm.0c02919Tsai, Shin-Bei; Chen, Jui-Yuan; Huang, Chih-Yang; Hou, Szu-Yu; Wu, Wen-Wei , Observing Growth and Crystallization of Au@ZnO Core–Shell Nanoparticles by In Situ Liquid Cell Transmission Electron Microscopy: Implications for Photocatalysis and Gas-Sensing Applications, 2021, ACS Applied Nano Materials, 10.1021/acsanm.0c02919
Kinetic pathways of crystallization at the nanoscalehttps://www.nature.com/articles/s41563-019-0514-1Ou, Zihao; Wang, Ziwei; Luo, Binbin; Luijten, Erik; Chen, Qian , Kinetic pathways of crystallization at the nanoscale, 2020, Nature Materials, 10.1038/s41563-019-0514-1
Statistical learning of governing equations of dynamics from in-situ electron microscopy imaging datahttps://linkinghub.elsevier.com/retrieve/pii/S0264127520305074Li, Xin; Dyck, Ondrej; Unocic, Raymond R.; Ievlev, Anton V.; Jesse, Stephen; Kalinin, Sergei V. , Statistical learning of governing equations of dynamics from in-situ electron microscopy imaging data, 2020, Materials & Design, 10.1016/j.matdes.2020.108973
In situ monitoring of exopolymer-dependent Mn mineralization on bacterial surfaceshttps://advances.sciencemag.org/content/6/27/eaaz3125Couasnon, Thaïs; Alloyeau, Damien; Ménez, Bénédicte; Guyot, François; Ghigo, Jean-Marc; Gélabert, Alexandre , In situ monitoring of exopolymer-dependent Mn mineralization on bacterial surfaces, 2020, Science Advances, 10.1126/sciadv.aaz3125
Imaging how thermal capillary waves and anisotropic interfacial stiffness shape nanoparticle supracrystalshttp://www.nature.com/articles/s41467-020-18363-2Ou, Zihao; Yao, Lehan; An, Hyosung; Shen, Bonan; Chen, Qian , Imaging how thermal capillary waves and anisotropic interfacial stiffness shape nanoparticle supracrystals, 2020, Nature Communications, 10.1038/s41467-020-18363-2
Observation of the interactions of silver nanoparticles (AgNPs) mediated by acid in the aquatic matrices using in-situ liquid cell transmission electron microscopyhttp://www.sciencedirect.com/science/article/pii/S0003267019315582Fernando, Ishara; Tay, Yee Yan; Karunasekera, Hasith; Zhou, Yan , Observation of the interactions of silver nanoparticles (AgNPs) mediated by acid in the aquatic matrices using in-situ liquid cell transmission electron microscopy, 2020, Analytica Chimica Acta, 10.1016/j.aca.2019.12.072
Time-Resolved Observation of Evolution of Amyloid-? Oligomer with Temporary Salt Crystalshttps://doi.org/10.1021/acs.jpclett.0c01487Nakajima, Kichitaro; Yamazaki, Tomoya; Kimura, Yuki; So, Masatomo; Goto, Yuji; Ogi, Hirotsugu , Time-Resolved Observation of Evolution of Amyloid-? Oligomer with Temporary Salt Crystals, 2020, The Journal of Physical Chemistry Letters, 10.1021/acs.jpclett.0c01487
High mobility of lattice molecules and defects during the early stage of protein crystallizationhttps://pubs.rsc.org/en/content/articlelanding/2020/sm/c9sm02382hYamazaki, Tomoya; Driessche, Alexander E. S. Van; Kimura, Yuki , High mobility of lattice molecules and defects during the early stage of protein crystallization, 2020, Soft Matter, 10.1039/C9SM02382H
Electron microscopy of nanoparticle superlattice formation at a solid-liquid interface in nonpolar liquidshttps://advances.sciencemag.org/content/6/20/eaba1404Cepeda-Perez, E.; Doblas, D.; Kraus, T.; Jonge, N. de , Electron microscopy of nanoparticle superlattice formation at a solid-liquid interface in nonpolar liquids, 2020, Science Advances, 10.1126/sciadv.aba1404
Unveiling the Dynamical Assembly of Magnetic Nanocrystal Zig-Zag Chains via In Situ TEM Imaging in Liquidhttps://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201907419Arciniegas, Milena P.; Castelli, Andrea; Brescia, Rosaria; Serantes, David; Ruta, Sergiu; Hovorka, Ondrej; Satoh, Akira; Chantrell, Roy; Pellegrino, Teresa , Unveiling the Dynamical Assembly of Magnetic Nanocrystal Zig-Zag Chains via In Situ TEM Imaging in Liquid, 2020, Small, 10.1002/smll.201907419
In Situ Ni 2+ Stain for Liposome Imaging by Liquid-Cell Transmission Electron Microscopyhttps://pubs.acs.org/doi/10.1021/acs.nanolett.0c00898Gnanasekaran, Karthikeyan; Chang, HanByul; Smeets, Paul J. M.; Korpanty, Joanna; Geiger, Franz M.; Gianneschi, Nathan C. , In Situ Ni 2+ Stain for Liposome Imaging by Liquid-Cell Transmission Electron Microscopy, 2020, Nano Letters, 10.1021/acs.nanolett.0c00898
Self-assembly of colloidal polymers from two-patch silica nanoparticleshttps://doi.org/10.1007/s12274-020-3024-1Li, Weiya; Liu, Bin; Hubert, Céline; Perro, Adeline; Duguet, Etienne; Ravaine, Serge , Self-assembly of colloidal polymers from two-patch silica nanoparticles, 2020, Nano Research, 10.1007/s12274-020-3024-1
New Insights into Water Treatment Materials with Chemically Sensitive Soft and Tender X-rayshttps://www.tandfonline.com/doi/full/10.1080/08940886.2020.1784695Su, Gregory M.; Cordova, Isvar A.; Wang, Cheng , New Insights into Water Treatment Materials with Chemically Sensitive Soft and Tender X-rays, 2020, Synchrotron Radiation News, 10.1080/08940886.2020.1784695
Probing Thermoresponsive Polymerization-Induced Self-Assembly with Variable-Temperature Liquid-Cell Transmission Electron Microscopyhttp://www.sciencedirect.com/science/article/pii/S2590238520306664Scheutz, Georg M.; Touve, Mollie A.; Carlini, Andrea S.; Garrison, John B.; Gnanasekaran, Karthikeyan; Sumerlin, Brent S.; Gianneschi, Nathan C. , Probing Thermoresponsive Polymerization-Induced Self-Assembly with Variable-Temperature Liquid-Cell Transmission Electron Microscopy, 2020, Matter, 10.1016/j.matt.2020.11.017
Assessment of Pressure and Density of Confined Water in Graphene Liquid Cellshttps://onlinelibrary.wiley.com/doi/abs/10.1002/admi.201901727Ghodsi, Seyed Mohammadreza; Sharifi?Asl, Seyyed Soroosh; Rehak, Pavel; Král, Petr; Megaridis, Constantine M.; Shahbazian?Yassar, Reza; Shokuhfar, Tolou , Assessment of Pressure and Density of Confined Water in Graphene Liquid Cells, 2020, Advanced Materials Interfaces, 10.1002/admi.201901727
Scalable and precise synthesis of two-dimensional metal organic framework nanosheets in a high shear annular microreactorhttp://www.sciencedirect.com/science/article/pii/S1385894720301248Jose, Nicholas A.; Zeng, Hua Chun; Lapkin, Alexei A. , Scalable and precise synthesis of two-dimensional metal organic framework nanosheets in a high shear annular microreactor, 2020, Chemical Engineering Journal, 10.1016/j.cej.2020.124133
Graphene-Sealed Flow Cells for In Situ Transmission Electron Microscopy of Liquid Sampleshttps://pubs.acs.org/doi/10.1021/acsnano.0c00431Dunn, Gabriel; Adiga, Vivekananda P.; Pham, Thang; Bryant, Christopher; Horton-Bailey, Donez J.; Belling, Jason N.; LaFrance, Ben; Jackson, Jonathan A.; Barzegar, Hamid Reza; Yuk, Jong Min; Aloni, Shaul; Crommie, Michael F.; Zettl, Alex , Graphene-Sealed Flow Cells for In Situ Transmission Electron Microscopy of Liquid Samples, 2020, ACS Nano, 10.1021/acsnano.0c00431
Strain-Induced Corrosion Kinetics at Nanoscale Are Revealed in Liquid: Enabling Control of Corrosion Dynamics of Electrocatalysishttp://www.sciencedirect.com/science/article/pii/S2451929420302539Shi, Fenglei; Gao, Wenpei; Shan, Hao; Li, Fan; Xiong, Yalin; Peng, Jiaheng; Xiang, Qian; Chen, Wenlong; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao; Zhu, Hong; Zhang, Hui; Yang, Deren; Pan, Xiaoqing; Wu, Jianbo , Strain-Induced Corrosion Kinetics at Nanoscale Are Revealed in Liquid: Enabling Control of Corrosion Dynamics of Electrocatalysis, 2020, Chem, 10.1016/j.chempr.2020.06.004
Current-Density-Dependent Electroplating in Ca Electrolytes: From Globules to Dendriteshttps://doi.org/10.1021/acsenergylett.0c01153Pu, Shengda D.; Gong, Chen; Gao, Xiangwen; Ning, Ziyang; Yang, Sixie; Marie, John-Joseph; Liu, Boyang; House, Robert A.; Hartley, Gareth O.; Luo, Jun; Bruce, Peter G.; Robertson, Alex W. , Current-Density-Dependent Electroplating in Ca Electrolytes: From Globules to Dendrites, 2020, ACS Energy Letters, 10.1021/acsenergylett.0c01153
Growth of Supported Gold Nanoparticles in Aqueous Phase Studied by in Situ Transmission Electron Microscopyhttps://doi.org/10.1021/acs.jpcc.9b10237Meijerink, Mark J.; de Jong, Krijn P.; Ze?evi?, Jovana , Growth of Supported Gold Nanoparticles in Aqueous Phase Studied by in Situ Transmission Electron Microscopy, 2020, The Journal of Physical Chemistry C, 10.1021/acs.jpcc.9b10237
Degradation Mechanisms of Supported Pt Nanocatalysts in Proton Exchange Membrane Fuel Cells: An Operando Study through Liquid Cell Transmission Electron Microscopyhttps://doi.org/10.1021/acsaem.9b02000Impagnatiello, Andrea; Cerqueira, Carolina Ferreira; Coulon, Pierre-Eugène; Morin, Arnaud; Escribano, Sylvie; Guetaz, Laure; Clochard, Marie-Claude; Rizza, Giancarlo , Degradation Mechanisms of Supported Pt Nanocatalysts in Proton Exchange Membrane Fuel Cells: An Operando Study through Liquid Cell Transmission Electron Microscopy, 2020, ACS Applied Energy Materials, 10.1021/acsaem.9b02000
A Universal Nano-capillary Based Method of Catalyst Immobilization for Liquid-Cell Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201916419Tarnev, Tsvetan; Cychy, Steffen; Andronescu, Corina; Muhler, Martin; Schuhmann, Wolfgang; Chen, Yen-Ting , A Universal Nano-capillary Based Method of Catalyst Immobilization for Liquid-Cell Transmission Electron Microscopy, 2020, Angewandte Chemie International Edition, 10.1002/anie.201916419
Molecular-Level Insight into Correlation between Surface Defects and Stability of Methylammonium Lead Halide Perovskite Under Controlled Humidityhttps://onlinelibrary.wiley.com/doi/abs/10.1002/smtd.202000834Kazemi, Mohammad Ali Akhavan; Raval, Parth; Cherednichekno, Kirill; Chotard, Jean-Noel; Krishna, Anurag; Demortiere, Arnaud; Reddy, G. N. Manjunatha; Sauvage, Frédéric , Molecular-Level Insight into Correlation between Surface Defects and Stability of Methylammonium Lead Halide Perovskite Under Controlled Humidity, 2020, Small Methods, https://doi.org/10.1002/smtd.202000834
Liquid-Flowing Graphene Chip-Based High-Resolution Electron Microscopyhttps://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202005468Koo, Kunmo; Park, Jungjae; Ji, Sanghyeon; Toleukhanova, Saltanat; Yuk, Jong Min , Liquid-Flowing Graphene Chip-Based High-Resolution Electron Microscopy, 2020, Advanced Materials, https://doi.org/10.1002/adma.202005468
Investigating local oxidation processes in Fe thin films in a water vapor environment by in situ liquid cell TEMhttp://www.sciencedirect.com/science/article/pii/S0304399119300750Key, Jordan W.; Zhu, Shixiang; Rouleau, Christopher M.; Unocic, Raymond R.; Xie, Yao; Kacher, Josh , Investigating local oxidation processes in Fe thin films in a water vapor environment by in situ liquid cell TEM, 2020, Ultramicroscopy, 10.1016/j.ultramic.2019.112842
Understanding solution processing of inorganic materials using cryo-EMhttps://www.osapublishing.org/ome/abstract.cfm?uri=ome-10-1-119Dutta, Nikita S.; Dutta, Nikita S.; Shao, Paul; Gong, Kai; Gong, Kai; White, Claire E.; White, Claire E.; Yao, Nan; Arnold, Craig B.; Arnold, Craig B. , Understanding solution processing of inorganic materials using cryo-EM, 2020, Optical Materials Express, 10.1364/OME.10.000119
In situ formation of 1D nanostructures from ceria nanoparticle dispersions by liquid cell TEM irradiationhttps://doi.org/10.1007/s10853-019-04140-0Asghar, M. S. A.; Inkson, B. J.; Möbus, G. , In situ formation of 1D nanostructures from ceria nanoparticle dispersions by liquid cell TEM irradiation, 2020, Journal of Materials Science, 10.1007/s10853-019-04140-0
In Situ Monitoring of the Seeding and Growth of Silver Metal–Organic Nanotubes by Liquid-Cell Transmission Electron Microscopyhttps://doi.org/10.1021/acsnano.0c03209Gnanasekaran, Karthikeyan; Vailonis, Kristina M.; Jenkins, David M.; Gianneschi, Nathan C. , In Situ Monitoring of the Seeding and Growth of Silver Metal–Organic Nanotubes by Liquid-Cell Transmission Electron Microscopy, 2020, ACS Nano, 10.1021/acsnano.0c03209
Real-Time In Situ Observations Reveal a Double Role for Ascorbic Acid in the Anisotropic Growth of Silver on Goldhttps://doi.org/10.1021/acs.jpclett.0c00121Aliyah, Kinanti; Lyu, Jieli; Goldmann, Claire; Bizien, Thomas; Hamon, Cyrille; Alloyeau, Damien; Constantin, Doru , Real-Time In Situ Observations Reveal a Double Role for Ascorbic Acid in the Anisotropic Growth of Silver on Gold, 2020, The Journal of Physical Chemistry Letters, 10.1021/acs.jpclett.0c00121
Revealing nanoscale mineralization pathways of hydroxyapatite using in situ liquid cell transmission electron microscopyhttps://advances.sciencemag.org/content/6/47/eaaz7524He, Kun; Sawczyk, Michal; Liu, Cong; Yuan, Yifei; Song, Boao; Deivanayagam, Ram; Nie, Anmin; Hu, Xiaobing; Dravid, Vinayak P.; Lu, Jun; Sukotjo, Cortino; Lu, Yu-peng; Král, Petr; Shokuhfar, Tolou; Shahbazian-Yassar, Reza , Revealing nanoscale mineralization pathways of hydroxyapatite using in situ liquid cell transmission electron microscopy, 2020, Science Advances, 10.1126/sciadv.aaz7524
Selective shortening of gold nanorods: when surface functionalization dictates the reactivity of nanostructureshttps://pubs.rsc.org/en/content/articlelanding/2020/nr/d0nr06326fKhelfa, Abdelali; Meng, Jun; Byun, Caroline; Wang, Guillaume; Nelayah, Jaysen; Ricolleau, Christian; Amara, Hakim; Guesmi, Hazar; Alloyeau, Damien , Selective shortening of gold nanorods: when surface functionalization dictates the reactivity of nanostructures, 2020, Nanoscale, 10.1039/D0NR06326F
Nanoscale Imaging and Stabilization of Silica Nanospheres in Liquid Phase Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/abs/10.1002/ppsc.201800374Meijerink, Mark J.; Spiga, Cristiano; Hansen, Thomas W.; Damsgaard, Christian D.; Jong, Krijn P. de; Ze?evi?, Jovana , Nanoscale Imaging and Stabilization of Silica Nanospheres in Liquid Phase Transmission Electron Microscopy, 2019, Particle & Particle Systems Characterization, 10.1002/ppsc.201800374
Assessment of oxide nanoparticle stability in liquid phase transmission electron microscopyhttps://doi.org/10.1007/s12274-019-2419-3Meijerink, Mark J.; de Jong, Krijn P.; Ze?evi?, Jovana , Assessment of oxide nanoparticle stability in liquid phase transmission electron microscopy, 2019, Nano Research, 10.1007/s12274-019-2419-3
Atomic-Level Observation of Electrochemical Platinum Dissolution and Redepositionhttps://doi.org/10.1021/acs.nanolett.9b02382Nagashima, Shinya; Ikai, Toshihiro; Sasaki, Yuki; Kawasaki, Tadahiro; Hatanaka, Tatsuya; Kato, Hisao; Kishita, Keisuke , Atomic-Level Observation of Electrochemical Platinum Dissolution and Redeposition, 2019, Nano Letters, 10.1021/acs.nanolett.9b02382
Dynamics of gold nanoparticle clusters observed with liquid-phase electron microscopyhttp://www.sciencedirect.com/science/article/pii/S0968432818303457Cepeda-Pérez, Elisa; de Jonge, Niels , Dynamics of gold nanoparticle clusters observed with liquid-phase electron microscopy, 2019, Micron, 10.1016/j.micron.2018.11.006
Dissolution Behavior of Isolated and Aggregated Hematite Particles Revealed by in Situ Liquid Cell Transmission Electron Microscopyhttps://doi.org/10.1021/acs.est.8b05922Li, Xiaoxu; Qin, Fuyu; Chen, Xuanyu; Sheng, Anxu; Wang, Zhiwei; Liu, Juan , Dissolution Behavior of Isolated and Aggregated Hematite Particles Revealed by in Situ Liquid Cell Transmission Electron Microscopy, 2019, Environmental Science & Technology, 10.1021/acs.est.8b05922
On Biomineralization: Enzymes Switch on Mesocrystal Assemblyhttps://doi.org/10.1021/acscentsci.8b00853Rao, Ashit; Roncal-Herrero, Teresa; Schmid, Elina; Drechsler, Markus; Scheffner, Martin; Gebauer, Denis; Kröger, Roland; Cölfen, Helmut , On Biomineralization: Enzymes Switch on Mesocrystal Assembly, 2019, ACS Central Science, 10.1021/acscentsci.8b00853
Time-Resolved Observations of Liquid–Liquid Phase Separation at the Nanoscale Using in Situ Liquid Transmission Electron Microscopyhttps://doi.org/10.1021/jacs.9b03083Le Ferrand, Hortense; Duchamp, Martial; Gabryelczyk, Bartosz; Cai, Hao; Miserez, Ali , Time-Resolved Observations of Liquid–Liquid Phase Separation at the Nanoscale Using in Situ Liquid Transmission Electron Microscopy, 2019, Journal of the American Chemical Society, 10.1021/jacs.9b03083
Elucidating the Growth of Metal–Organic Nanotubes Combining Isoreticular Synthesis with Liquid-Cell Transmission Electron Microscopyhttps://doi.org/10.1021/jacs.9b04586Vailonis, Kristina M.; Gnanasekaran, Karthikeyan; Powers, Xian B.; Gianneschi, Nathan C.; Jenkins, David M. , Elucidating the Growth of Metal–Organic Nanotubes Combining Isoreticular Synthesis with Liquid-Cell Transmission Electron Microscopy, 2019, Journal of the American Chemical Society, 10.1021/jacs.9b04586
Dynamic Optimization and Non-linear Model Predictive Control to Achieve Targeted Particle Morphologieshttps://onlinelibrary.wiley.com/doi/abs/10.1002/cite.201800118Gerlinger, Wolfgang; Asua, José Maria; Chaloupka, Tomáš; Faust, Johannes M. M.; Gjertsen, Fredrik; Hamzehlou, Shaghayegh; Hauger, Svein Olav; Jahns, Ekkehard; Joy, Preet J.; Kosek, Juraj; Lapkin, Alexei; Leiza, Jose Ramon; Mhamdi, Adel; Mitsos, Alexander; Naeem, Omar; Rajabalinia, Noushin; Singstad, Peter; Suberu, John , Dynamic Optimization and Non-linear Model Predictive Control to Achieve Targeted Particle Morphologies, 2019, Chemie Ingenieur Technik, 10.1002/cite.201800118
Conjugated Block Copolymers as Model Systems to Examine Mechanisms of Charge Generation in Donor–Acceptor Materialshttps://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201804858Aplan, Melissa P.; Grieco, Christopher; Lee, Youngmin; Munro, Jason M.; Lee, Wonho; Gray, Jennifer L.; Seibers, Zach D.; Kuei, Brooke; Litofsky, Joshua H.; Kilbey, S. Michael; Wang, Qing; Dabo, Ismaila; Asbury, John B.; Gomez, Enrique D. , Conjugated Block Copolymers as Model Systems to Examine Mechanisms of Charge Generation in Donor–Acceptor Materials, 2019, Advanced Functional Materials, https://doi.org/10.1002/adfm.201804858
Chemical and Morphological Origins of Improved Ion Conductivity in Perfluoro Ionene Chain Extended Ionomershttps://pubs.acs.org/doi/10.1021/jacs.9b05322Su, Gregory M.; Cordova, Isvar A.; Yandrasits, Michael A.; Lindell, Matthew; Feng, Jun; Wang, Cheng; Kusoglu, Ahmet , Chemical and Morphological Origins of Improved Ion Conductivity in Perfluoro Ionene Chain Extended Ionomers, 2019, Journal of the American Chemical Society, 10.1021/jacs.9b05322
In Situ Analysis of Growth Behaviors of Cu2O Nanocubes in Liquid Cell Transmission Electron Microscopyhttps://doi.org/10.1021/acs.analchem.9b01192Lin, Ya-Hsuan; Chen, Jui-Yuan; Chen, Fu-Chun; Kuo, Ming-Yu; Hsu, Yung-Jung; Wu, Wen-Wei , In Situ Analysis of Growth Behaviors of Cu2O Nanocubes in Liquid Cell Transmission Electron Microscopy, 2019, Analytical Chemistry, 10.1021/acs.analchem.9b01192
Direct Observation of Redox Mediator-Assisted Solution-Phase Discharging of Li–O2 Battery by Liquid-Phase Transmission Electron Microscopyhttps://doi.org/10.1021/jacs.9b02332Lee, Donghoon; Park, Hyeokjun; Ko, Youngmin; Park, Hayoung; Hyeon, Taeghwan; Kang, Kisuk; Park, Jungwon , Direct Observation of Redox Mediator-Assisted Solution-Phase Discharging of Li–O2 Battery by Liquid-Phase Transmission Electron Microscopy, 2019, Journal of the American Chemical Society, 10.1021/jacs.9b02332
Synthesis of complex rare earth nanostructures using in situ liquid cell transmission electron microscopyhttps://pubs.rsc.org/en/content/articlelanding/2019/na/c9na00197bTaylor, Caitlin A.; Nenoff, Tina M.; Pratt, Sarah H.; Hattar, Khalid , Synthesis of complex rare earth nanostructures using in situ liquid cell transmission electron microscopy, 2019, Nanoscale Advances, 10.1039/C9NA00197B
Real-time imaging of activation and degradation of carbon supported octahedral Pt–Ni alloy fuel cell catalysts at the nanoscale using in situ electrochemical liquid cell STEMhttps://pubs.rsc.org/en/content/articlelanding/2019/ee/c9ee01185dBeermann, Vera; Holtz, Megan E.; Padgett, Elliot; Araujo, Jorge Ferreira de; Muller, David A.; Strasser, Peter , Real-time imaging of activation and degradation of carbon supported octahedral Pt–Ni alloy fuel cell catalysts at the nanoscale using in situ electrochemical liquid cell STEM, 2019, Energy & Environmental Science, 10.1039/C9EE01185D
Morphological and Structural Evolution of Co3O4 Nanoparticles Revealed by in Situ Electrochemical Transmission Electron Microscopy during Electrocatalytic Water Oxidationhttps://doi.org/10.1021/acsnano.9b04745Ortiz Peña, Nathaly; Ihiawakrim, Dris; Han, Madeleine; Lassalle-Kaiser, Benedikt; Carenco, Sophie; Sanchez, Clément; Laberty-Robert, Christel; Portehault, David; Ersen, Ovidiu , Morphological and Structural Evolution of Co3O4 Nanoparticles Revealed by in Situ Electrochemical Transmission Electron Microscopy during Electrocatalytic Water Oxidation, 2019, ACS Nano, 10.1021/acsnano.9b04745
In Situ Observations of Shell Growth and Oxidative Etching Behaviors of Pd Nanoparticles in Solutions by Liquid Cell Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201900050Su, Ting; Wang, Zhong Lin; Wang, Zhiwei , In Situ Observations of Shell Growth and Oxidative Etching Behaviors of Pd Nanoparticles in Solutions by Liquid Cell Transmission Electron Microscopy, 2019, Small, 10.1002/smll.201900050
Redox-Sensitive Facet Dependency in Etching of Ceria Nanocrystals Directly Observed by Liquid Cell TEMhttps://doi.org/10.1021/jacs.9b09508Sung, Jongbaek; Choi, Back Kyu; Kim, Byunghoon; Kim, Byung Hyo; Kim, Joodeok; Lee, Donghoon; Kim, Sungin; Kang, Kisuk; Hyeon, Taeghwan; Park, Jungwon , Redox-Sensitive Facet Dependency in Etching of Ceria Nanocrystals Directly Observed by Liquid Cell TEM, 2019, Journal of the American Chemical Society, 10.1021/jacs.9b09508
In Situ Observation of Dynamic Galvanic Replacement Reactions in Twinned Metallic Nanowires by Liquid Cell Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201910379Zhuang, Chunqiang; Qi, Heyang; Cheng, Xing; Chen, Ge; Gao, Chunlang; Wang, Lihua; Sun, Shaorui; Zou, Jin; Han, Xiaodong , In Situ Observation of Dynamic Galvanic Replacement Reactions in Twinned Metallic Nanowires by Liquid Cell Transmission Electron Microscopy, 2019, Angewandte Chemie International Edition, 10.1002/anie.201910379
Direct Observation of Early Stages of Growth of Multilayered DNA-Templated Au-Pd-Au Core-Shell Nanoparticles in Liquid Phasehttps://www.frontiersin.org/articles/10.3389/fbioe.2019.00019/fullBhattarai, Nabraj; Prozorov, Tanya , Direct Observation of Early Stages of Growth of Multilayered DNA-Templated Au-Pd-Au Core-Shell Nanoparticles in Liquid Phase, 2019, Frontiers in Bioengineering and Biotechnology, 10.3389/fbioe.2019.00019
Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticleshttp://www.sciencedirect.com/science/article/pii/S0045653518319830Fernando, Ishara; Zhou, Yan , Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles, 2019, Chemosphere, 10.1016/j.chemosphere.2018.10.122
Structural analysis of single nanoparticles in liquid by low-dose STEM nanodiffractionhttp://www.sciencedirect.com/science/article/pii/S0968432818302920Khelfa, Abdelali; Byun, Caroline; Nelayah, Jaysen; Wang, Guillaume; Ricolleau, Christian; Alloyeau, Damien , Structural analysis of single nanoparticles in liquid by low-dose STEM nanodiffraction, 2019, Micron, 10.1016/j.micron.2018.09.008
In situ TEM observation of Au–Cu2O core–shell growth in liquidshttps://pubs.rsc.org/en/content/articlelanding/2019/nr/c9nr00972hChen, Fu-Chun; Chen, Jui-Yuan; Lin, Ya-Hsuan; Kuo, Ming-Yu; Hsu, Yung-Jung; Wu, Wen-Wei , In situ TEM observation of Au–Cu2O core–shell growth in liquids, 2019, Nanoscale, 10.1039/C9NR00972H
Template-Assisted in Situ Synthesis of Ag@Au Bimetallic Nanostructures Employing Liquid-Phase Transmission Electron Microscopyhttps://doi.org/10.1021/acsnano.9b06614Ahmad, Nabeel; Bon, Marta; Passerone, Daniele; Erni, Rolf , Template-Assisted in Situ Synthesis of Ag@Au Bimetallic Nanostructures Employing Liquid-Phase Transmission Electron Microscopy, 2019, ACS Nano, 10.1021/acsnano.9b06614
Attachment of iron oxide nanoparticles to carbon nanofibers studied by in-situ liquid phase transmission electron microscopyhttp://www.sciencedirect.com/science/article/pii/S0968432818302981Krans, Nynke A.; Ahmad, N.; Alloyeau, D.; de Jong, K. P.; Ze?evi?, J. , Attachment of iron oxide nanoparticles to carbon nanofibers studied by in-situ liquid phase transmission electron microscopy, 2019, Micron, 10.1016/j.micron.2018.10.009
Current Density Distribution in Electrochemical Cells with Small Cell Heights and Coplanar Thin Electrodes as Used in ec-S/TEM Cell Geometrieshttps://iopscience.iop.org/article/10.1149/2.0211904jes/metaStricker, Elizabeth A.; Ke, Xinyou; Wainright, Jesse S.; Unocic, Raymond R.; Savinell, Robert F. , Current Density Distribution in Electrochemical Cells with Small Cell Heights and Coplanar Thin Electrodes as Used in ec-S/TEM Cell Geometries, 2019, Journal of The Electrochemical Society, 10.1149/2.0211904jes
Controlling the radical-induced redox chemistry inside a liquid-cell TEMhttps://pubs.rsc.org/en/content/articlelanding/2019/sc/c9sc02227aAmbroži?, Bojan; Prašnikar, Anže; Hodnik, Nejc; Kostevšek, Nina; Likozar, Blaž; Rožman, Kristina Žužek; Šturm, Sašo , Controlling the radical-induced redox chemistry inside a liquid-cell TEM, 2019, Chemical Science, 10.1039/C9SC02227A
Liquid Cell Transmission Electron Microscopy Sheds Light on The Mechanism of Palladium Electrodepositionhttps://doi.org/10.1021/acs.langmuir.8b02846Yang, Jie; Andrei, Carmen M.; Chan, Yuting; Mehdi, B. Layla; Browning, Nigel D.; Botton, Gianluigi A.; Soleymani, Leyla , Liquid Cell Transmission Electron Microscopy Sheds Light on The Mechanism of Palladium Electrodeposition, 2019, Langmuir, 10.1021/acs.langmuir.8b02846
Controlling dissolution of PbTe nanoparticles in organic solvents during liquid cell transmission electron microscopyhttps://pubs.rsc.org/en/content/articlelanding/2019/nr/c9nr04646aBhattarai, Nabraj; Woodall, Danielle L.; Boercker, Janice E.; Tischler, Joseph G.; Brintlinger, Todd H. , Controlling dissolution of PbTe nanoparticles in organic solvents during liquid cell transmission electron microscopy, 2019, Nanoscale, 10.1039/C9NR04646A
Influence of Cetyltrimethylammonium Bromide on Gold Nanocrystal Formation Studied by In Situ Liquid Cell Scanning Transmission Electron Microscopyhttps://doi.org/10.1021/acs.jpcc.7b06383Canepa, Silvia A.; Sneed, Brian T.; Sun, Hongyu; Unocic, Raymond R.; Mølhave, Kristian , Influence of Cetyltrimethylammonium Bromide on Gold Nanocrystal Formation Studied by In Situ Liquid Cell Scanning Transmission Electron Microscopy, 2018, The Journal of Physical Chemistry C, 10.1021/acs.jpcc.7b06383
Driving reversible redox reactions at solid-liquid interfaces with the electron beam of a transmission electron microscope: REVERSIBLE REDOX REACTIONS AT SOLID-LIQUID INTERFACEShttp://doi.wiley.com/10.1111/jmi.12568Ahmad, Nabeel; Wang, Guillaume; Nelayah, Jaysen; Ricolleau, Christian; Alloyeau, Damien , Driving reversible redox reactions at solid-liquid interfaces with the electron beam of a transmission electron microscope: REVERSIBLE REDOX REACTIONS AT SOLID-LIQUID INTERFACES, 2018, Journal of Microscopy, 10.1111/jmi.12568
Comparing ex vivo and in vitro translocation of silver nanoparticles and ions through human nasal epitheliumhttp://www.sciencedirect.com/science/article/pii/S014296121830259XFalconer, Jonathan L.; Alt, Jeremiah A.; Grainger, David W. , Comparing ex vivo and in vitro translocation of silver nanoparticles and ions through human nasal epithelium, 2018, Biomaterials, 10.1016/j.biomaterials.2018.04.013
Monitoring the dynamics of cell-derived extracellular vesicles at the nanoscale by liquid-cell transmission electron microscopyhttps://pubs.rsc.org/en/content/articlelanding/2018/nr/c7nr07576fPiffoux, Max; Ahmad, Nabeel; Nelayah, Jaysen; Wilhelm, Claire; Silva, Amanda; Gazeau, Florence; Alloyeau, Damien , Monitoring the dynamics of cell-derived extracellular vesicles at the nanoscale by liquid-cell transmission electron microscopy, 2018, Nanoscale, 10.1039/C7NR07576F
Hydrodynamic assembly of two-dimensional layered double hydroxide nanostructureshttps://www.nature.com/articles/s41467-018-07395-4Jose, Nicholas A.; Zeng, Hua Chun; Lapkin, Alexei A. , Hydrodynamic assembly of two-dimensional layered double hydroxide nanostructures, 2018, Nature Communications, 10.1038/s41467-018-07395-4
Biomineralization of calcium phosphate revealed by in situ liquid-phase electron microscopyhttps://www.nature.com/articles/s42004-018-0081-4Wang, Xiaoyue; Yang, Jie; Andrei, Carmen M.; Soleymani, Leyla; Grandfield, Kathryn , Biomineralization of calcium phosphate revealed by in situ liquid-phase electron microscopy, 2018, Communications Chemistry, 10.1038/s42004-018-0081-4
“On demand” triggered crystallization of CaCO3 from solute precursor species stabilized by the water-in-oil microemulsionhttps://pubs.rsc.org/en/content/articlelanding/2018/cp/c8cp00540kStawski, Tomasz M.; Roncal-Herrero, Teresa; Fernandez-Martinez, Alejandro; Matamoros-Veloza, Adriana; Kröger, Roland; Benning, Liane G. , “On demand” triggered crystallization of CaCO3 from solute precursor species stabilized by the water-in-oil microemulsion, 2018, Physical Chemistry Chemical Physics, 10.1039/C8CP00540K
Thermoresponsive Gel Embedded with Adipose Stem-Cell-Derived Extracellular Vesicles Promotes Esophageal Fistula Healing in a Thermo-Actuated Delivery Strategyhttps://pubs.acs.org/doi/10.1021/acsnano.8b00117Silva, Amanda K. A.; Perretta, Silvana; Perrod, Guillaume; Pidial, Laetitia; Lindner, Véronique; Carn, Florent; Lemieux, Shony; Alloyeau, Damien; Boucenna, Imane; Menasché, Philippe; Dallemagne, Bernard; Gazeau, Florence; Wilhelm, Claire; Cellier, Christophe; Clément, Olivier; Rahmi, Gabriel , Thermoresponsive Gel Embedded with Adipose Stem-Cell-Derived Extracellular Vesicles Promotes Esophageal Fistula Healing in a Thermo-Actuated Delivery Strategy, 2018, ACS Nano, 10.1021/acsnano.8b00117
Nanoscale kinetics of asymmetrical corrosion in core-shell nanoparticleshttps://www.nature.com/articles/s41467-018-03372-zShan, Hao; Gao, Wenpei; Xiong, Yalin; Shi, Fenglei; Yan, Yucong; Ma, Yanling; Shang, Wen; Tao, Peng; Song, Chengyi; Deng, Tao; Zhang, Hui; Yang, Deren; Pan, Xiaoqing; Wu, Jianbo , Nanoscale kinetics of asymmetrical corrosion in core-shell nanoparticles, 2018, Nature Communications, 10.1038/s41467-018-03372-z
Operando Monitoring of the Solution-Mediated Discharge and Charge Processes in a Na–O2 Battery Using Liquid-Electrochemical Transmission Electron Microscopyhttps://doi.org/10.1021/acs.nanolett.7b04937Lutz, Lukas; Dachraoui, Walid; Demortière, Arnaud; Johnson, Lee R.; Bruce, Peter G.; Grimaud, Alexis; Tarascon, Jean-Marie , Operando Monitoring of the Solution-Mediated Discharge and Charge Processes in a Na–O2 Battery Using Liquid-Electrochemical Transmission Electron Microscopy, 2018, Nano Letters, 10.1021/acs.nanolett.7b04937
Operando liquid cell electron microscopy of discharge and charge kinetics in lithium-oxygen batterieshttps://www.osti.gov/pages/biblio/1461336-operando-liquid-cell-electron-microscopy-discharge-charge-kinetics-lithium-oxygen-batteriesHe, Kun; Bi, Xuanxuan; Yuan, Yifei; Foroozan, Tara; Song, Boao; Amine, Khalil (ORCID:0000000192063719); Lu, Jun (ORCID:0000000308588577); Shahbazian-Yassar, Reza , Operando liquid cell electron microscopy of discharge and charge kinetics in lithium-oxygen batteries, 2018, Nano Energy, 10.1016/j.nanoen.2018.04.046
In Situ Electron Diffraction Tomography Using a Liquid-Electrochemical Transmission Electron Microscopy Cell for Crystal Structure Determination of Cathode Materials for Li-Ion batterieshttps://doi.org/10.1021/acs.nanolett.8b02436Karakulina, Olesia M.; Demortière, Arnaud; Dachraoui, Walid; Abakumov, Artem M.; Hadermann, Joke , In Situ Electron Diffraction Tomography Using a Liquid-Electrochemical Transmission Electron Microscopy Cell for Crystal Structure Determination of Cathode Materials for Li-Ion batteries, 2018, Nano Letters, 10.1021/acs.nanolett.8b02436
In Situ Transmission Electron Microscopy Explores a New Nanoscale Pathway for Direct Gypsum Formation in Aqueous Solutionhttps://doi.org/10.1021/acsanm.8b00739He, Kun; Nie, Anmin; Yuan, Yifei; Ghodsi, Seyed Mohammadreza; Song, Boao; Firlar, Emre; Lu, Jun; Lu, Yu-peng; Shokuhfar, Tolou; Megaridis, Constantine M.; Shahbazian-Yassar, Reza , In Situ Transmission Electron Microscopy Explores a New Nanoscale Pathway for Direct Gypsum Formation in Aqueous Solution, 2018, ACS Applied Nano Materials, 10.1021/acsanm.8b00739
Direct in Situ Observation and Analysis of the Formation of Palladium Nanocrystals with High-Index Facetshttps://doi.org/10.1021/acs.nanolett.8b02953Gao, Wenpei; Hou, Yusheng; Hood, Zachary D.; Wang, Xue; More, Karren; Wu, Ruqian; Xia, Younan; Pan, Xiaoqing; Chi, Miaofang , Direct in Situ Observation and Analysis of the Formation of Palladium Nanocrystals with High-Index Facets, 2018, Nano Letters, 10.1021/acs.nanolett.8b02953
Liquid Cell Transmission Electron Microscopy and the Impact of Confinement on the Precipitation from Supersaturated Solutionshttps://www.mdpi.com/2075-163X/8/1/21Kröger, Roland; Verch, Andreas , Liquid Cell Transmission Electron Microscopy and the Impact of Confinement on the Precipitation from Supersaturated Solutions, 2018, Minerals, 10.3390/min8010021
Influence of Structural Defects on Biomineralized ZnS Nanoparticle Dissolution: An in-Situ Electron Microscopy Studyhttps://doi.org/10.1021/acs.est.7b04343Eskelsen, Jeremy R.; Xu, Jie; Chiu, Michelle; Moon, Ji-Won; Wilkins, Branford; Graham, David E.; Gu, Baohua; Pierce, Eric M. , Influence of Structural Defects on Biomineralized ZnS Nanoparticle Dissolution: An in-Situ Electron Microscopy Study, 2018, Environmental Science & Technology, 10.1021/acs.est.7b04343
In situ liquid cell crystallization and imaging of thiamethoxam by helium ion microscopyhttps://avs.scitation.org/doi/10.1116/1.5040849Belianinov, Alex; Pawlicki, Alison; Burch, Matt; Kim, Songkil; Ievlev, Anton; Fowler, Jeff; Ovchinnikova, Olga , In situ liquid cell crystallization and imaging of thiamethoxam by helium ion microscopy, 2018, Journal of Vacuum Science & Technology B, 10.1116/1.5040849
In situ study of nucleation and growth dynamics of Au nanoparticles on MoS2 nanoflakeshttps://pubs.rsc.org/en/content/articlelanding/2018/nr/c8nr03519aSong, Boao; He, Kun; Yuan, Yifei; Sharifi-Asl, Soroosh; Cheng, Meng; Lu, Jun; Saidi, Wissam A.; Shahbazian-Yassar, Reza , In situ study of nucleation and growth dynamics of Au nanoparticles on MoS2 nanoflakes, 2018, Nanoscale, 10.1039/C8NR03519A
Observation of Solution Samples by Transmission Electron Microscopehttps://www.hitachi-hightech.com/file/global/pdf/sinews/si_report/110202.pdfKimura, Yuki , Observation of Solution Samples by Transmission Electron Microscope, 2018, Scientific Instrument News, -
In Situ TEM Observations of Corrosion in Nanocrystalline Fe Thin Filmshttps://onlinelibrary.wiley.com/doi/10.1002/9781119423829.ch29Gross, David; Kacher, Josh; Key, Jordan; Hattar, Khalid; Robertson, Ian M. , In Situ TEM Observations of Corrosion in Nanocrystalline Fe Thin Films, 2018, Ceramic Transactions Series, 10.1002/9781119423829.ch29
In-situ observation of radiation physics and chemistry of nanostructured cerium oxide in waterhttps://doi.org/10.1088/2053-1591/aae634Asghar, Muhammad Sajid Ali; Inkson, Beverley; Seal, Sudipta; Molinari, Marco; Sayle, Dean; Möbus, Günter , In-situ observation of radiation physics and chemistry of nanostructured cerium oxide in water, 2018, Materials Research Express, 10.1088/2053-1591/aae634
Quantifying the Nucleation and Growth Kinetics of Electron Beam Nanochemistry with Liquid Cell Scanning Transmission Electron Microscopyhttps://doi.org/10.1021/acs.chemmater.8b03050Wang, Mei; Park, Chiwoo; Woehl, Taylor J. , Quantifying the Nucleation and Growth Kinetics of Electron Beam Nanochemistry with Liquid Cell Scanning Transmission Electron Microscopy, 2018, Chemistry of Materials, 10.1021/acs.chemmater.8b03050
Bio-camouflage of anatase nanoparticles explored by in situ high-resolution electron microscopyhttps://pubs.rsc.org/en/content/articlelanding/2017/nr/c7nr02239eRibeiro, Ana R.; Mukherjee, Arijita; Hu, Xuan; Shafien, Shayan; Ghodsi, Reza; He, Kun; Gemini-Piperni, Sara; Wang, Canhui; Klie, Robert F.; Shokuhfar, Tolou; Shahbazian-Yassar, Reza; Borojevic, Radovan; Rocha, Luis A.; Granjeiro, José M. , Bio-camouflage of anatase nanoparticles explored by in situ high-resolution electron microscopy, 2017, Nanoscale, 10.1039/C7NR02239E
Two types of amorphous protein particles facilitate crystal nucleationhttps://www.pnas.org/content/114/9/2154Yamazaki, Tomoya; Kimura, Yuki; Vekilov, Peter G.; Furukawa, Erika; Shirai, Manabu; Matsumoto, Hiroaki; Driessche, Alexander E. S. Van; Tsukamoto, Katsuo , Two types of amorphous protein particles facilitate crystal nucleation, 2017, Proceedings of the National Academy of Sciences, 10.1073/pnas.1606948114
Gene Expression in Electron-Beam-Irradiated Bacteria in Reply to “Live Cell Electron Microscopy Is Probably Impossible”https://pubs.acs.org/doi/10.1021/acsnano.6b06616Kennedy, Eamonn; Nelson, Edward M.; Damiano, John; Timp, Gregory , Gene Expression in Electron-Beam-Irradiated Bacteria in Reply to “Live Cell Electron Microscopy Is Probably Impossible”, 2017, ACS Nano, 10.1021/acsnano.6b06616
Applying shot boundary detection for automated crystal growth analysis during in situ transmission electron microscope experimentshttps://doi.org/10.1186/s40679-016-0034-xMoeglein, W. A.; Griswold, R.; Mehdi, B. L.; Browning, N. D.; Teuton, J. , Applying shot boundary detection for automated crystal growth analysis during in situ transmission electron microscope experiments, 2017, Advanced Structural and Chemical Imaging, 10.1186/s40679-016-0034-x
Ceria-Water-Reactions Studied by Liquid Cell TEMhttps://iopscience.iop.org/article/10.1088/1742-6596/902/1/012004Asghar, Muhammad Sajid Ali; Inkson, Beverley; Möbus, Günter , Ceria-Water-Reactions Studied by Liquid Cell TEM, 2017, Journal of Physics: Conference Series, 10.1088/1742-6596/902/1/012004
Colloidal Covalent Organic Frameworkshttps://doi.org/10.1021/acscentsci.6b00331Smith, Brian J.; Parent, Lucas R.; Overholts, Anna C.; Beaucage, Peter A.; Bisbey, Ryan P.; Chavez, Anton D.; Hwang, Nicky; Park, Chiwoo; Evans, Austin M.; Gianneschi, Nathan C.; Dichtel, William R. , Colloidal Covalent Organic Frameworks, 2017, ACS Central Science, 10.1021/acscentsci.6b00331
Giant Radiolytic Dissolution Rates of Aqueous Ceria Observed in Situ by Liquid-Cell TEMhttps://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cphc.201601398Asghar, Muhammad Sajid Ali; Inkson, Beverley J.; Möbus, Günter , Giant Radiolytic Dissolution Rates of Aqueous Ceria Observed in Situ by Liquid-Cell TEM, 2017, ChemPhysChem, https://doi.org/10.1002/cphc.201601398
Evolution analysis of V2O5·nH2O gels for preparation of xerogels having a high specific surface area and their replicashttps://pubs.rsc.org/en/content/articlelanding/2017/ra/c7ra06850fIshii, Kanji; Kimura, Yuki; Yamazaki, Tomoya; Oaki, Yuya; Imai, Hiroaki , Evolution analysis of V2O5·nH2O gels for preparation of xerogels having a high specific surface area and their replicas, 2017, RSC Advances, 10.1039/C7RA06850F
Exploring the Formation of Symmetric Gold Nanostars by Liquid-Cell Transmission Electron Microscopyhttps://doi.org/10.1021/acs.nanolett.7b01013Ahmad, Nabeel; Wang, Guillaume; Nelayah, Jaysen; Ricolleau, Christian; Alloyeau, Damien , Exploring the Formation of Symmetric Gold Nanostars by Liquid-Cell Transmission Electron Microscopy, 2017, Nano Letters, 10.1021/acs.nanolett.7b01013
Practical Aspects of Electrochemical Corrosion Measurements During In Situ Analytical Transmission Electron Microscopy (TEM) of Austenitic Stainless Steel in Aqueous Mediahttps://www.cambridge.org/core/product/identifier/S1431927617012314/type/journal_articleSchilling, Sibylle; Janssen, Arne; Zaluzec, Nestor J.; Burke, M. Grace , Practical Aspects of Electrochemical Corrosion Measurements During In Situ Analytical Transmission Electron Microscopy (TEM) of Austenitic Stainless Steel in Aqueous Media, 2017, Microscopy and Microanalysis, 10.1017/S1431927617012314
Exploring dynamic surface processes during silicate mineral (wollastonite) dissolution with liquid cell TEMhttps://onlinelibrary.wiley.com/doi/abs/10.1111/jmi.12509Leonard, D. N.; Hellmann, R. , Exploring dynamic surface processes during silicate mineral (wollastonite) dissolution with liquid cell TEM, 2017, Journal of Microscopy, https://doi.org/10.1111/jmi.12509
Building with ions: towards direct write of platinum nanostructures using in situ liquid cell helium ion microscopyhttps://pubs.rsc.org/en/content/articlelanding/2017/nr/c7nr04417hIevlev, Anton V.; Jakowski, Jacek; Burch, Matthew J.; Iberi, Vighter; Hysmith, Holland; Joy, David C.; Sumpter, Bobby G.; Belianinov, Alex; Unocic, Raymond R.; Ovchinnikova, Olga S. , Building with ions: towards direct write of platinum nanostructures using in situ liquid cell helium ion microscopy, 2017, Nanoscale, 10.1039/C7NR04417H
The Use of Graphene and Its Derivatives for Liquid-Phase Transmission Electron Microscopy of Radiation-Sensitive Specimenshttps://doi.org/10.1021/acs.nanolett.6b04383Cho, Hoduk; Jones, Matthew R.; Nguyen, Son C.; Hauwiller, Matthew R.; Zettl, Alex; Alivisatos, A. Paul , The Use of Graphene and Its Derivatives for Liquid-Phase Transmission Electron Microscopy of Radiation-Sensitive Specimens, 2017, Nano Letters, 10.1021/acs.nanolett.6b04383
In Situ Observation of Au Nanostructure Evolution in Liquid Cell TEMhttps://doi.org/10.1021/acs.jpcc.7b07956Chen, Ying-Chen; Chen, Jui-Yuan; Wu, Wen-Wei , In Situ Observation of Au Nanostructure Evolution in Liquid Cell TEM, 2017, The Journal of Physical Chemistry C, 10.1021/acs.jpcc.7b07956
Anisotropic Shape Changes of Silica Nanoparticles Induced in Liquid with Scanning Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201602466Ze?evi?, Jovana; Hermannsdörfer, Justus; Schuh, Tobias; Jong, Krijn P. de; Jonge, Niels de , Anisotropic Shape Changes of Silica Nanoparticles Induced in Liquid with Scanning Transmission Electron Microscopy, 2017, Small, https://doi.org/10.1002/smll.201602466
In Liquid Observation and Quantification of Nucleation and Growth of Gold Nanostructures Using in Situ Transmission Electron Microscopyhttps://doi.org/10.1021/acs.jpcc.6b10400Yang, Jie; Andrei, Carmen M.; Botton, Gianluigi A.; Soleymani, Leyla , In Liquid Observation and Quantification of Nucleation and Growth of Gold Nanostructures Using in Situ Transmission Electron Microscopy, 2017, The Journal of Physical Chemistry C, 10.1021/acs.jpcc.6b10400
Formation of Au Nanoparticles in Liquid Cell Transmission Electron Microscopy: From a Systematic Study to Engineered Nanostructureshttps://doi.org/10.1021/acs.chemmater.7b04421Zhang, Yucheng; Keller, Debora; Rossell, Marta D.; Erni, Rolf , Formation of Au Nanoparticles in Liquid Cell Transmission Electron Microscopy: From a Systematic Study to Engineered Nanostructures, 2017, Chemistry of Materials, 10.1021/acs.chemmater.7b04421
In Situ Electron Microscopy Imaging and Quantitative Structural Modulation of Nanoparticle Superlatticeshttps://doi.org/10.1021/acsnano.6b05270Kim, Juyeong; Jones, Matthew R.; Ou, Zihao; Chen, Qian , In Situ Electron Microscopy Imaging and Quantitative Structural Modulation of Nanoparticle Superlattices, 2016, ACS Nano, 10.1021/acsnano.6b05270
Live Bacterial Physiology Visualized with 5 nm Resolution Using Scanning Transmission Electron Microscopyhttps://doi.org/10.1021/acsnano.5b07697Kennedy, Eamonn; Nelson, Edward M.; Tanaka, Tetsuya; Damiano, John; Timp, Gregory , Live Bacterial Physiology Visualized with 5 nm Resolution Using Scanning Transmission Electron Microscopy, 2016, ACS Nano, 10.1021/acsnano.5b07697
Growth of dendritic nanostructures by liquid-cell transmission electron microscopy: a reflection of the electron-irradiation historyhttps://doi.org/10.1186/s40679-016-0023-0Ahmad, Nabeel; Le Bouar, Yann; Ricolleau, Christian; Alloyeau, Damien , Growth of dendritic nanostructures by liquid-cell transmission electron microscopy: a reflection of the electron-irradiation history, 2016, Advanced Structural and Chemical Imaging, 10.1186/s40679-016-0023-0
Precise In Situ Modulation of Local Liquid Chemistry via Electron Irradiation in Nanoreactors Based on Graphene Liquid Cellshttps://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201602273Wang, Canhui; Shokuhfar, Tolou; Klie, Robert F. , Precise In Situ Modulation of Local Liquid Chemistry via Electron Irradiation in Nanoreactors Based on Graphene Liquid Cells, 2016, Advanced Materials, 10.1002/adma.201602273
1D oriented attachment of calcite nanocrystals: formation of single-crystalline rods through collisionhttps://pubs.rsc.org/en/content/articlelanding/2016/ra/c6ra09452jTakasaki, Mihiro; Kimura, Yuki; Yamazaki, Tomoya; Oaki, Yuya; Imai, Hiroaki , 1D oriented attachment of calcite nanocrystals: formation of single-crystalline rods through collision, 2016, RSC Advances, 10.1039/C6RA09452J
Visualizing Macromolecules in Liquid at the Nanoscalehttps://www.cambridge.org/core/product/identifier/9781316337455%23CT-bp-17/type/book_part,,-
Anomalous Growth and Coalescence Dynamics of Hybrid Perovskite Nanoparticles Observed by Liquid-Cell Transmission Electron Microscopy,https://doi.org/10.1021/acsnano.6b04234"
Qin, Fuyu; Wang, Zhiwei; Wang, Zhong Lin , Anomalous Growth and Coalescence Dynamics of Hybrid Perovskite Nanoparticles Observed by Liquid-Cell Transmission Electron Microscopy, 2016, ACS Nano, 10.1021/acsnano.6b04234
Synergistic Biomineralization Phenomena Created by a Combinatorial Nacre Protein Model Systemhttps://doi.org/10.1021/acs.biochem.6b00163Chang, Eric P.; Roncal-Herrero, Teresa; Morgan, Tamara; Dunn, Katherine E.; Rao, Ashit; Kunitake, Jennie A. M. R.; Lui, Susan; Bilton, Matthew; Estroff, Lara A.; Kröger, Roland; Johnson, Steven; Cölfen, Helmut; Evans, John Spencer , Synergistic Biomineralization Phenomena Created by a Combinatorial Nacre Protein Model System, 2016, Biochemistry, 10.1021/acs.biochem.6b00163
Imaging the Hydrated Microbe-Metal Interface Using Nanoscale Spectrum Imaginghttps://onlinelibrary.wiley.com/doi/abs/10.1002/ppsc.201600073Lewis, Edward A.; Downie, Helen; Collins, Richard F.; Prestat, Eric; Lloyd, Jonathan R.; Haigh, Sarah J. , Imaging the Hydrated Microbe-Metal Interface Using Nanoscale Spectrum Imaging, 2016, Particle & Particle Systems Characterization, https://doi.org/10.1002/ppsc.201600073
In Situ Observation of Hematite Nanoparticle Aggregates Using Liquid Cell Transmission Electron Microscopyhttps://doi.org/10.1021/acs.est.5b06305Liu, Juan; Wang, Zhiwei; Sheng, Anxu; Liu, Feng; Qin, Fuyu; Wang, Zhong Lin , In Situ Observation of Hematite Nanoparticle Aggregates Using Liquid Cell Transmission Electron Microscopy, 2016, Environmental Science & Technology, 10.1021/acs.est.5b06305
Live Cell Electron Microscopy Is Probably Impossiblehttps://pubs.acs.org/doi/10.1021/acsnano.6b02809de Jonge, Niels; Peckys, Diana B. , Live Cell Electron Microscopy Is Probably Impossible, 2016, ACS Nano, 10.1021/acsnano.6b02809
In situ Analytical TEM of Asphaltene Formation and Aggregation from Crude Oilhttp://www.journals.cambridge.org/abstract_S1431927616004839Janssen, Arne; Zaluzec, Nestor J.; Kulzick, Matthew A.; Crosher, Tom; Burke, M.G. , In situ Analytical TEM of Asphaltene Formation and Aggregation from Crude Oil, 2016, Microscopy and Microanalysis, 10.1017/S1431927616004839
Sample Preparation Methodologies for In Situ Liquid and Gaseous Cell Analytical Transmission Electron Microscopy of Electropolished Specimenshttps://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/abs/sample-preparation-methodologies-for-in-situ-liquid-and-gaseous-cell-analytical-transmission-electron-microscopy-of-electropolished-specimens/2EF60DDA6421035B91C31E0C13B2B902Zhong, Xiang Li; Schilling, Sibylle; Zaluzec, Nestor J.; Burke, M. Grace , Sample Preparation Methodologies for In Situ Liquid and Gaseous Cell Analytical Transmission Electron Microscopy of Electropolished Specimens, 2016, Microscopy and Microanalysis, 10.1017/S1431927616011855
The Impact of Li Grain Size on Coulombic Efficiency in Li Batterieshttps://www.nature.com/articles/srep34267Mehdi, B. Layla; Stevens, Andrew; Qian, Jiangfeng; Park, Chiwoo; Xu, Wu; Henderson, Wesley A.; Zhang, Ji-Guang; Mueller, Karl T.; Browning, Nigel D. , The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries, 2016, Scientific Reports, 10.1038/srep34267
In-Situ Liquid TEM Study on the Degradation Mechanism of Fuel Cell Catalystshttps://www.sae.org/publications/technical-papers/content/2016-01-1192/Kato, Hisao , In-Situ Liquid TEM Study on the Degradation Mechanism of Fuel Cell Catalysts, 2016, SAE International Journal of Alternative Powertrains, 10.4271/2016-01-1192
In-situ studies of the dendritic yttria precursor nanostructures growth dynamics at elevated temperatures using liquid-cell transmission electron microscopehttps://onlinelibrary.wiley.com/doi/full/10.1002/9783527808465.EMC2016.6563Sturm, Saso; Ambroži?, Bojan; Bele, Marjan; Kostevšek, Nina; Zuzec Rozman, Kristina , In-situ studies of the dendritic yttria precursor nanostructures growth dynamics at elevated temperatures using liquid-cell transmission electron microscope, 2016, European Microscopy Congress 2016: Proceedings, -
Electrochemistry in Liquid Environments: Challenges in the Presence of Accelerated Electronshttps://www.researchgate.net/publication/310841907_Electrochemistry_in_Liquid_Environments_Challenges_in_the_Presence_of_Accelerated_ElectronsChakravadhanula, Venkata Sai Kiran; Teodoro, Thais Silva; Scherer, Torsten; Garlapati, Suresh Kumar; Kobler, Aaron; Neelisetty, Krishna Kanth; Fawey, Mohammed Hammad; Kuebel, Christian , Electrochemistry in Liquid Environments: Challenges in the Presence of Accelerated Electrons, 2016, EMC Special, -
Semiconductor–Metal Nanofloret Hybrid Structures by Self-Processing Synthesishttps://doi.org/10.1021/jacs.5b12667Hazut, Ori; Waichman, Sharon; Subramani, Thangavel; Sarkar, Debabrata; Dash, Sthitaprajna; Roncal-Herrero, Teresa; Kröger, Roland; Yerushalmi, Roie , Semiconductor–Metal Nanofloret Hybrid Structures by Self-Processing Synthesis, 2016, Journal of the American Chemical Society, 10.1021/jacs.5b12667
Impact of Membrane-Induced Particle Immobilization on Seeded Growth Monitored by In Situ Liquid Scanning Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201502974Weiner, Rebecca G.; Chen, Dennis P.; Unocic, Raymond R.; Skrabalak, Sara E. , Impact of Membrane-Induced Particle Immobilization on Seeded Growth Monitored by In Situ Liquid Scanning Transmission Electron Microscopy, 2016, Small, https://doi.org/10.1002/smll.201502974
Direct-write liquid phase transformations with a scanning transmission electron microscopehttps://pubs.rsc.org/en/content/articlelanding/2016/nr/c6nr04994jUnocic, Raymond R.; Lupini, Andrew R.; Borisevich, Albina Y.; Cullen, David A.; Kalinin, Sergei V.; Jesse, Stephen , Direct-write liquid phase transformations with a scanning transmission electron microscope, 2016, Nanoscale, 10.1039/C6NR04994J
Importance and Challenges of Electrochemical in Situ Liquid Cell Electron Microscopy for Energy Conversion Researchhttps://doi.org/10.1021/acs.accounts.6b00330Hodnik, Nejc; Dehm, Gerhard; Mayrhofer, Karl J. J. , Importance and Challenges of Electrochemical in Situ Liquid Cell Electron Microscopy for Energy Conversion Research, 2016, Accounts of Chemical Research, 10.1021/acs.accounts.6b00330
Atomistic Insights into the Oriented Attachment of Tunnel-Based Oxide Nanostructureshttps://doi.org/10.1021/acsnano.5b05535Yuan, Yifei; Wood, Stephen M.; He, Kun; Yao, Wentao; Tompsett, David; Lu, Jun; Nie, Anmin; Islam, M. Saiful; Shahbazian-Yassar, Reza , Atomistic Insights into the Oriented Attachment of Tunnel-Based Oxide Nanostructures, 2016, ACS Nano, 10.1021/acsnano.5b05535
Fractal growth of platinum electrodeposits revealed by in situ electron microscopyhttps://pubs.rsc.org/en/content/articlelanding/2016/nr/c6nr05167gWang, Lifen; Wen, Jianguo; Sheng, Huaping; Miller, Dean J. , Fractal growth of platinum electrodeposits revealed by in situ electron microscopy, 2016, Nanoscale, 10.1039/C6NR05167G
Observing Growth of Nanostructured ZnO in Liquidhttps://doi.org/10.1021/acs.chemmater.6b02040Hsieh, Ting-Huan; Chen, Jui-Yuan; Huang, Chun-Wei; Wu, Wen-Wei , Observing Growth of Nanostructured ZnO in Liquid, 2016, Chemistry of Materials, 10.1021/acs.chemmater.6b02040
Electron beam induced chemistry of gold nanoparticles in saline solutionhttps://pubs.rsc.org/en/content/articlelanding/2015/cc/c5cc06812fHermannsdörfer, J.; Jonge, N. de; Verch, A. , Electron beam induced chemistry of gold nanoparticles in saline solution, 2015, Chemical Communications, 10.1039/C5CC06812F
Unravelling Kinetic and Thermodynamic Effects on the Growth of Gold Nanoplates by Liquid Transmission Electron Microscopyhttps://doi.org/10.1021/acs.nanolett.5b00140Alloyeau, Damien; Dachraoui, Walid; Javed, Yasir; Belkahla, Hannen; Wang, Guillaume; Lecoq, Hélène; Ammar, Souad; Ersen, Ovidiu; Wisnet, Andreas; Gazeau, Florence; Ricolleau, Christian , Unravelling Kinetic and Thermodynamic Effects on the Growth of Gold Nanoplates by Liquid Transmission Electron Microscopy, 2015, Nano Letters, 10.1021/acs.nanolett.5b00140
Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathwayhttps://doi.org/10.1021/acsnano.5b03708Elgrabli, Dan; Dachraoui, Walid; Ménard-Moyon, Cécilia; Liu, Xiao Jie; Bégin, Dominique; Bégin-Colin, Sylvie; Bianco, Alberto; Gazeau, Florence; Alloyeau, Damien , Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathway, 2015, ACS Nano, 10.1021/acsnano.5b03708
Interaction Potentials of Anisotropic Nanocrystals from the Trajectory Sampling of Particle Motion using in Situ Liquid Phase Transmission Electron Microscopyhttps://doi.org/10.1021/acscentsci.5b00001Chen, Qian; Cho, Hoduk; Manthiram, Karthish; Yoshida, Mark; Ye, Xingchen; Alivisatos, A. Paul , Interaction Potentials of Anisotropic Nanocrystals from the Trajectory Sampling of Particle Motion using in Situ Liquid Phase Transmission Electron Microscopy, 2015, ACS Central Science, 10.1021/acscentsci.5b00001
Exceptionally Slow Movement of Gold Nanoparticles at a Solid/Liquid Interface Investigated by Scanning Transmission Electron Microscopyhttps://doi.org/10.1021/acs.langmuir.5b00150Verch, Andreas; Pfaff, Marina; de Jonge, Niels , Exceptionally Slow Movement of Gold Nanoparticles at a Solid/Liquid Interface Investigated by Scanning Transmission Electron Microscopy, 2015, Langmuir, 10.1021/acs.langmuir.5b00150
Visualization of film-forming polymer particles with a liquid cell technique in a transmission electron microscopehttps://pubs.rsc.org/en/content/articlelanding/2015/an/c5an01067eLiu, Lili; Liu, Yi; Wu, Wenjun; Miller, Christopher M.; Dickey, Elizabeth C. , Visualization of film-forming polymer particles with a liquid cell technique in a transmission electron microscope, 2015, Analyst, 10.1039/C5AN01067E
Direct Imaging of the Electrochemical Deposition of Poly(3,4-ethylenedioxythiophene) by Transmission Electron Microscopyhttps://doi.org/10.1021/acsmacrolett.5b00479Liu, Jinglin; Wei, Bin; Sloppy, Jennifer D.; Ouyang, Liangqi; Ni, Chaoying; Martin, David C. , Direct Imaging of the Electrochemical Deposition of Poly(3,4-ethylenedioxythiophene) by Transmission Electron Microscopy, 2015, ACS Macro Letters, 10.1021/acsmacrolett.5b00479
Observation and Quantification of Nanoscale Processes in Lithium Batteries by Operando Electrochemical (S)TEMhttps://doi.org/10.1021/acs.nanolett.5b00175Mehdi, B. L.; Qian, J.; Nasybulin, E.; Park, C.; Welch, D. A.; Faller, R.; Mehta, H.; Henderson, W. A.; Xu, W.; Wang, C. M.; Evans, J. E.; Liu, J.; Zhang, J. -G.; Mueller, K. T.; Browning, N. D. , Observation and Quantification of Nanoscale Processes in Lithium Batteries by Operando Electrochemical (S)TEM, 2015, Nano Letters, 10.1021/acs.nanolett.5b00175
Nanoscale Imaging of Fundamental Li Battery Chemistry: Solid-Electrolyte Interphase Formation and Preferential Growth of Lithium Metal Nanoclustershttps://doi.org/10.1021/nl5048626Sacci, Robert L.; Black, Jennifer M.; Balke, Nina; Dudney, Nancy J.; More, Karren L.; Unocic, Raymond R. , Nanoscale Imaging of Fundamental Li Battery Chemistry: Solid-Electrolyte Interphase Formation and Preferential Growth of Lithium Metal Nanoclusters, 2015, Nano Letters, 10.1021/nl5048626
Microscopy of nanoparticulate dispersionshttps://onlinelibrary.wiley.com/doi/10.1111/jmi.12290Brydson, R.; Brown, A.; Hodges, C.; Abellan, P.; Hondow, N. , Microscopy of nanoparticulate dispersions, 2015, Journal of Microscopy, 10.1111/jmi.12290
Phosphorus-Doped p–n Homojunction ZnO Nanowires: Growth Kinetics in Liquid and Their Optoelectronic Propertieshttps://doi.org/10.1021/acs.chemmater.5b01377Lee, Wei-Che; Chen, Jui-Yuan; Huang, Chun-Wei; Chiu, Chung-Hua; Lin, Ting-Yi; Wu, Wen-Wei , Phosphorus-Doped p–n Homojunction ZnO Nanowires: Growth Kinetics in Liquid and Their Optoelectronic Properties, 2015, Chemistry of Materials, 10.1021/acs.chemmater.5b01377
Quantitative Description of Crystal Nucleation and Growth from in Situ Liquid Scanning Transmission Electron Microscopyhttps://doi.org/10.1021/acsnano.5b03720Ievlev, Anton V.; Jesse, Stephen; Cochell, Thomas J.; Unocic, Raymond R.; Protopopescu, Vladimir A.; Kalinin, Sergei V. , Quantitative Description of Crystal Nucleation and Growth from in Situ Liquid Scanning Transmission Electron Microscopy, 2015, ACS Nano, 10.1021/acsnano.5b03720
Writing Silica Structures in Liquid with Scanning Transmission Electron Microscopyhttps://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201400913Put, Marcel W. P. van de; Carcouët, Camille C. M. C.; Bomans, Paul H. H.; Friedrich, Heiner; Jonge, Niels de; Sommerdijk, Nico A. J. M. , Writing Silica Structures in Liquid with Scanning Transmission Electron Microscopy, 2015, Small, https://doi.org/10.1002/smll.201400913
Liquid scanning transmission electron microscopy: Nanoscale imaging in micrometers-thick liquidshttp://www.sciencedirect.com/science/article/pii/S163107051300203XSchuh, Tobias; de Jonge, Niels , Liquid scanning transmission electron microscopy: Nanoscale imaging in micrometers-thick liquids, 2014, Comptes Rendus Physique, 10.1016/j.crhy.2013.11.004
Estimating the effective density of engineered nanomaterials for in vitro dosimetryhttps://www.nature.com/articles/ncomms4514DeLoid, Glen; Cohen, Joel M.; Darrah, Tom; Derk, Raymond; Rojanasakul, Liying; Pyrgiotakis, Georgios; Wohlleben, Wendel; Demokritou, Philip , Estimating the effective density of engineered nanomaterials for in vitro dosimetry, 2014, Nature Communications, 10.1038/ncomms4514
An Oligomeric C-RING Nacre Protein Influences Prenucleation Events and Organizes Mineral Nanoparticleshttps://doi.org/10.1021/bi5008854Perovic, Iva; Verch, Andreas; Chang, Eric P.; Rao, Ashit; Cölfen, Helmut; Kröger, Roland; Evans, John Spencer , An Oligomeric C-RING Nacre Protein Influences Prenucleation Events and Organizes Mineral Nanoparticles, 2014, Biochemistry, 10.1021/bi5008854
Real-time imaging and local elemental analysis of nanostructures in liquidshttps://pubs.rsc.org/en/content/articlelanding/2014/cc/c4cc02743dLewis, Edward A.; Haigh, Sarah J.; Slater, Thomas J. A.; He, Zheyang; Kulzick, Matthew A.; Burke, M. Grace; Zaluzec, Nestor J. , Real-time imaging and local elemental analysis of nanostructures in liquids, 2014, Chemical Communications, 10.1039/C4CC02743D
Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cellshttps://academic.oup.com/mam/article-abstract/20/2/346/6932360?redirectedFrom=fulltextPeckys, Diana B.; de Jonge, Niels , Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cells, 2014, Microscopy and Microanalysis, 10.1017/S1431927614000099
Tuning Electrodeposition Parameters for Tailored Nanoparticle Size, Shape, and Morphology: An In Situ ec-STEM Investigationhttps://www.cambridge.org/core/product/identifier/S143192761400926X/type/journal_articleUnocic, Raymond R.; Sacci, Robert L.; Veith, Gabriel M.; Dudney, Nancy J.; More, Karren L. , Tuning Electrodeposition Parameters for Tailored Nanoparticle Size, Shape, and Morphology: An In Situ ec-STEM Investigation, 2014, Microscopy and Microanalysis, 10.1017/S143192761400926X
Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolytehttps://doi.org/10.1021/nl404577cHoltz, Megan E.; Yu, Yingchao; Gunceler, Deniz; Gao, Jie; Sundararaman, Ravishankar; Schwarz, Kathleen A.; Arias, Tomás A.; Abruña, Héctor D.; Muller, David A. , Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte, 2014, Nano Letters, 10.1021/nl404577c
In Situ Liquid Cell TEM Study of Morphological Evolution and Degradation of Pt–Fe Nanocatalysts During Potential Cyclinghttps://doi.org/10.1021/jp506857bZhu, Guo-Zhen; Prabhudev, Sagar; Yang, Jie; Gabardo, Christine M.; Botton, Gianluigi A.; Soleymani, Leyla , In Situ Liquid Cell TEM Study of Morphological Evolution and Degradation of Pt–Fe Nanocatalysts During Potential Cycling, 2014, The Journal of Physical Chemistry C, 10.1021/jp506857b
Quantitative electrochemical measurements using in situ ec-S/TEM deviceshttps://pubmed.ncbi.nlm.nih.gov/24618013/Unocic, Raymond R.; Sacci, Robert L.; Brown, Gilbert M.; Veith, Gabriel M.; Dudney, Nancy J.; More, Karren L.; Walden, Franklin S.; Gardiner, Daniel S.; Damiano, John; Nackashi, David P. , Quantitative electrochemical measurements using in situ ec-S/TEM devices, 2014, Microscopy and Microanalysis, 10.1017/S1431927614000166
X-ray energy-dispersive spectrometry during in situ liquid cell studies using an analytical electron microscopehttps://academic.oup.com/mam/article-abstract/20/2/323/6932345Zaluzec, Nestor J.; Burke, M. Grace; Haigh, Sarah J.; Kulzick, Matthew A. , X-ray energy-dispersive spectrometry during in situ liquid cell studies using an analytical electron microscope, 2014, Microscopy and Microanalysis, 10.1017/S1431927614000154
In-Situ Transmission Electron Microscopy of Liposomes in an Aqueous Environmenthttps://doi.org/10.1021/la401288gHoppe, Sarah M.; Sasaki, Darryl Y.; Kinghorn, Aubrianna N.; Hattar, Khalid , In-Situ Transmission Electron Microscopy of Liposomes in an Aqueous Environment, 2013, Langmuir, 10.1021/la401288g
In Situ Electron Energy-Loss Spectroscopy in Liquidshttp://arxiv.org/abs/1212.1501Holtz, Megan E.; Yu, Yingchao; Gao, Jie; Abruña, Héctor D.; Muller, David A. , In Situ Electron Energy-Loss Spectroscopy in Liquids, 2013, Microscopy and Microanalysis, 10.1017/S1431927613001505
Dendritic Gold Nanowire Growth Observed in Liquid with Transmission Electron Microscopyhttps://doi.org/10.1021/la401584zKraus, Tobias; de Jonge, Niels , Dendritic Gold Nanowire Growth Observed in Liquid with Transmission Electron Microscopy, 2013, Langmuir, 10.1021/la401584z
Video-frequency scanning transmission electron microscopy of moving gold nanoparticles in liquidhttp://www.sciencedirect.com/science/article/pii/S096843281200011XRing, Elisabeth A.; de Jonge, Niels , Video-frequency scanning transmission electron microscopy of moving gold nanoparticles in liquid, 2012, Micron, 10.1016/j.micron.2012.01.010
UV-induced photochemical transformations of citrate-capped silver nanoparticle suspensionshttps://doi.org/10.1007/s11051-012-1139-3Gorham, Justin M.; MacCuspie, Robert I.; Klein, Kate L.; Fairbrother, D. Howard; Holbrook, R. David , UV-induced photochemical transformations of citrate-capped silver nanoparticle suspensions, 2012, Journal of Nanoparticle Research, 10.1007/s11051-012-1139-3
Silicon nitride windows for electron microscopy of whole cellshttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2818.2011.03501.xRing, E. A.; Peckys, D. B.; Dukes, M. J.; Baudoin, J. P.; Jonge, N. De , Silicon nitride windows for electron microscopy of whole cells, 2011, Journal of Microscopy, 10.1111/j.1365-2818.2011.03501.x
Imaging Specific Protein Labels on Eukaryotic Cells in Liquid with Scanning Transmission Electron Microscopyhttps://www.cambridge.org/core/product/identifier/S1551929511000903/type/journal_articlePeckys, Diana B.; Dukes, Madeline J.; Ring, Elisabeth A.; Piston, David W.; de Jonge, Niels , Imaging Specific Protein Labels on Eukaryotic Cells in Liquid with Scanning Transmission Electron Microscopy, 2011, Microscopy Today, 10.1017/S1551929511000903
Transmission electron microscopy with a liquid flow cellhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2818.2010.03484.xKlein, K. L.; Anderson, I. M.; Jonge, N. De , Transmission electron microscopy with a liquid flow cell, 2011, Journal of Microscopy, 10.1111/j.1365-2818.2010.03484.x
Energy-Loss Characteristics for EFTEM Imaging with a Liquid Flow Cellhttps://www.cambridge.org/core/product/identifier/S1431927611004776/type/journal_articleKlein, K; de Jonge, N; Anderson, I , Energy-Loss Characteristics for EFTEM Imaging with a Liquid Flow Cell, 2011, Microscopy and Microanalysis, 10.1017/S1431927611004776
Visualizing Gold Nanoparticle Uptake in Live Cells with Liquid Scanning Transmission Electron Microscopyhttps://doi.org/10.1021/nl200285rPeckys, Diana B.; de Jonge, Niels , Visualizing Gold Nanoparticle Uptake in Live Cells with Liquid Scanning Transmission Electron Microscopy, 2011, Nano Letters, 10.1021/nl200285r
Fully hydrated yeast cells imaged with electron microscopyhttps://www.sciencedirect.com/science/article/pii/S0006349511004036Peckys, Diana B.; Mazur, Peter; Gould, Kathleen L.; de Jonge, Niels , Fully hydrated yeast cells imaged with electron microscopy, 2011, Biophysical Journal, 10.1016/j.bpj.2011.03.045
Low-Cost, Atmospheric-Pressure Scanning Transmission Electron Microscopyhttps://www.cambridge.org/core/product/identifier/S1551929511000228/type/journal_articlede Jonge, Niels; Ring, Elisabeth A.; Bigelow, Wilbur C.; Veith, Gabriel M. , Low-Cost, Atmospheric-Pressure Scanning Transmission Electron Microscopy, 2011, Microscopy Today, 10.1017/S1551929511000228
Electron microscopy of specimens in liquidhttp://www.nature.com/articles/nnano.2011.161de Jonge, Niels; Ross, Frances M. , Electron microscopy of specimens in liquid, 2011, Nature Nanotechnology, 10.1038/nnano.2011.161
Correlative Fluorescence Microscopy and Scanning Transmission Electron Microscopy of Quantum-Dot-Labeled Proteins in Whole Cells in Liquidhttps://doi.org/10.1021/nn1010232Dukes, Madeline J.; Peckys, Diana B.; de Jonge, Niels , Correlative Fluorescence Microscopy and Scanning Transmission Electron Microscopy of Quantum-Dot-Labeled Proteins in Whole Cells in Liquid, 2010, ACS Nano, 10.1021/nn1010232
Nanometer-resolution electron microscopy through micrometers-thick water layershttp://www.sciencedirect.com/science/article/pii/S0304399110001099de Jonge, Niels; Poirier-Demers, Nicolas; Demers, Hendrix; Peckys, Diana B.; Drouin, Dominique , Nanometer-resolution electron microscopy through micrometers-thick water layers, 2010, Ultramicroscopy, 10.1016/j.ultramic.2010.04.001
Microfluidic system for transmission electron microscopyhttps://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/abs/microfluidic-system-for-transmission-electron-microscopy/DD52A099B00899B61081DDF05BFC0F49Ring, Elisabeth A.; de Jonge, Niels , Microfluidic system for transmission electron microscopy, 2010, Microscopy and Microanalysis, 10.1017/S1431927610093669
Atmospheric Pressure Scanning Transmission Electron Microscopyhttps://doi.org/10.1021/nl904254gde Jonge, Niels; Bigelow, Wilbur C.; Veith, Gabriel M. , Atmospheric Pressure Scanning Transmission Electron Microscopy, 2010, Nano Letters, 10.1021/nl904254g
Simulating STEM imaging of nanoparticles in micrometers-thick substrateshttps://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/simulating-stem-imaging-of-nanoparticles-in-micrometersthick-substrates/B7C114D223F7FC8615D4168BDFACADC7Demers, H.; Poirier-Demers, N.; Drouin, D.; de Jonge, N. , Simulating STEM imaging of nanoparticles in micrometers-thick substrates, 2010, Microscopy and Microanalysis, 10.1017/S1431927610094080
Electron microscopy of whole cells in liquid with nanometer resolutionhttps://www.pnas.org/content/early/2009/01/21/0809567106Jonge, N. de; Peckys, D. B.; Kremers, G. J.; Piston, D. W. , Electron microscopy of whole cells in liquid with nanometer resolution, 2009, Proceedings of the National Academy of Sciences, 10.1073/pnas.0809567106
Nanoscale Imaging of Whole Cells Using a Liquid Enclosure and a Scanning Transmission Electron Microscopehttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0008214Peckys, Diana B.; Veith, Gabriel M.; Joy, David C.; Jonge, Niels de , Nanoscale Imaging of Whole Cells Using a Liquid Enclosure and a Scanning Transmission Electron Microscope, 2009, PLOS ONE, 10.1371/journal.pone.0008214