Observing Solid-State Formation of Oriented Porous Functional Oxide Nanowire Heterostructures by in Situ TEM

Jo-Hsuan Ho, Yi-Hsin Ting, Jui-Yuan Chen, Chun-Wei Huang, Tsung-Chun Tsai, Ting-Yi Lin, Chih-Yang Huang, and Wen-Wei Wu, 2018

Image courtesy of Nano Letters


Transition metal oxide nanowires have attracted extensive attention because of their physical characteristics. Among them, ZnO nanowires have great potential. Due to the multifunctional properties of ZnO, devices built using ZnO-based heterostructures always perform well. In this study, interesting diffusion behavior between ZnO nanowires and Fe metal was observed by using in situ transmission electron microscopy. ZnO nanowires and Fe metal were annealed under ultrahigh vacuum (UHV) conditions at 800 K. By controlling the annealing time for the solid-state diffusion, porous Fe3O4 and unique ZnO/porous Fe3O4 nanowire heterostructures were formed. As-formed porous Fe3O4 nanowires with voids can be divided into two types by appearance: plate-like voids and zigzag-like hollow voids. From high-resolution transmission electron microscopy (HRTEM) images and fast Fourier transform (FFT) diffraction patterns, we found that plate-like voids formed along the {111} plane, which was the close-packed plane of Fe3O4, and that zigzag-like hollow voids formed along the {111}/{022} planes. Moreover, a transition region existed during diffusion, with a parallel relationship found between the Fe3O4 crystal with plate-like voids and the ZnO crystal. A sharp interface was determined to exist between the Fe3O4 crystal with zigzag-like hollow voids and ZnO. These oriented porous Fe3O4/ZnO axial nanowire heterostructures exhibited a unique appearance and interesting formation behavior. Furthermore, the structures had a high surface-area-to-volume ratio, which is promising for sensing applications.

Impact Statement

The authors fabricate an oriented porous Fe3O4/ZnO axial nanowire heterostructure by solid-state diffusion reaction through in situ annealing at 800 K.