Image courtesy of Chemosphere


Widespread usage of silver nanoparticles (AgNPs) in consumer products has resulted in their presence in the aquatic environment. The evolution of the properties of AgNPs with changes in pH and time in terms of colloidal stability, dissolution and aggregation were investigated in a series of short and long-term experiments using freshly synthesized uncoated AgNPs. The solution pH modifies the surface charge and the oxidative dissolution of AgNPs. As a result, the particle behavior varied in acidic and alkaline conditions. The particle size decreased with the increasing pH at a given time frame resulting in lower aggregation in the higher pH regime and increased particle stability. These results have been further proved with the direct evidence obtained using time resolved in situ imaging acquired through Liquid cell transmission electron microscopy (LCTEM). Furthermore, the magnitude of the impact of the pH on the particle properties is higher than the impact of the dissolved oxygen concentration. The derived empirical formulae reflect that the AgNP oxidation depends on both dissolved oxygen and protons while the AgNP dissolution increasing with the increase of either of these. Overall, our results highlight the impact of the solution pH on the evolution of the properties of AgNPs over the time and provide an insight to confidently extend the results to predict the environmental transformation of AgNPs from ideal systems to the real.

Impact Statement

Colloidal silver nanoparticles are increasingly found in consumer products. The stability of these nanoparticles and the aquatic release of silver ions under acidic and alkaline conditions is a key environmental concern. The dissolution of silver nanoparticles was studied in real time using liquid cell transmission electron microscopy. Acidic and neutral pH values were found to have a stronger influence on particle aggregation due to destabilization of the nanoparticles while basic conditions lead to better particle stability.